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ABSTRACT r/m;/}\ ﬂéqﬂ*
/330 3
This thesis considers the problem of providing attitude
control for a spacecraft engaged in an extended mission. As a
basis for the choice of a suitable attitude control system the

L

following requirements are applied,

Maximum reliability
Minimum ejection of mass
Minimum average power
Minimum system weight
Minimum peak power

An interplanetary mission of 400 days duration is adopt-
ed as a general guide for the problem, but most of the equations
and comparisons are presented in parametric form. Extended
missions imply that a momentum exchange type attitude control
system be used to minimize ejection of fuel mass, and the thesis
primarily considers only systems of this type. The thesis derives
the equations of motion for a spacecraft equipped with eighteen
different control systems. The control system chosen to best
‘satisfy the five design requirements is a system consisting of
four gyro-type controllers arranged in two pairs with each pair
operating back-to-back to minimize control cross coupling torques.
One pair of controllers provide roll torques, and all four controllers

i
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contribute yaw torques,

The stability and control analysis considers operation

of the spacecraft in three modes.

Zero Input Modc
Rate Control Mode

Position Control Mode

Each of the modes are evaluated for roll motion by assuming
negligible interaxial coupling, and the analysis includes opera-
tion of the controller gimbal angles to large angles, Aecthart

Thesis Supervisor: Wallace E, Vander Velde

Title: Associate Professor of
Aeronautics and Astronautics
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CHAPTER 6
CLOSING THE ATTITUDE CONTROL LOOP

6.1 Introduction

Previous chapters have defined the physical character-
istics of the spacecraft, have chosen the four gyro (12-34-1234)
system as being the most attractive control system, and have
defined probable disturbances on the spacecraft. Before the
mathematical models representing the spacecraft and control
system can be combined into a single loop it is necessary to
specify an attitude sensor and some type of torque motor which
will receive signal information from the sensor and provide the
proper angular rates and positions to the spin axes of the four
controllers. The sequence of this chapter follows an order that
first determines the dynamics of the individual controllers by
methods similar to those of Chapter 2 which considered the com-
plete spacecraft. Next, the motors and drive systems which
drive the controllers are defined. Then, the sensor and relatéd
amplifiers are assumed together with the provision for tandem
compensation, if required. Finally, all of the above components

are combined into a single loop.

6.2 Response of the Controllers to Moments Applied by

the Roll and Pitch Torque Generators

In a manner parallel to that of Section 2. 3 the funda-
mental equation of motion of a controller consisting of a gyro

case, a gimbal, and a rotor is

#,-3
= M (Eq 6.2.1)
dt I cascill

Since it is proposed to derive roll and pitch moments from the
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control system by torquing the controllers about their vertical
axis (+vyaxis), it is convenient to sum torques in the coordinate

frame of the case (gu frame). Accordingly,

dH
E M = &2 + W %*u (Eq 6.2.2)
case‘l - t_jGU 1,cu®H]| gy

= + +
where H Hr Hg HC

From Appendix D, Equation D. 3.5,
pCy * gSy
WI cu = -pgy + qcy (Eq 6.2. 3)

r + vy
L .

The approximation made in Section 2. 6 is that

»
H = J B (Eq 6.2.4)
Ij GIM p

Now, in the gu frame

0

3
H = Q HJ = |J RCe (Eq 6.2.5)
r_jGU GU,GIM "r | o

JpBSa
_ J

Define JC gr as the combined moment of inertia of the case,
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gimbal and rotor.

J

cgr

= Jc +Jg +Jr

Combining the last two equations gives

Hlgu

0
]
JpB Ca

JpBSa

s

+J g

Y

-

(Eq 6. 2. 6)

(Eq 6.2.7)

Differentiating with respect to time where it is assumed that

angular momentum about the spin axis, JPB , is constant gives

I{IGU

0

- JpB Saa

+J BCaa

¥ T gr

9

Y

(Eq 6. 2. 8)

Then substituting the appropriate values into Eq 6. 2. 2 gives for

the Number 1 Controller the following.

s M =
L case ll GU

cg

1

45

- (R +7) Jp[; Ca {-pSv * qC'Y)(JpB SatJ

cgr

. -JpBSaa- (pCv'+qu)(JszQ+JC )

gt

+J r?; + (@ +pCy tqSy) JpéCa

(Eq 6.2.9)

o |
o)




The X and Y components of the torques in the last equation are
normal to the single degree of freedom of the case, and there-
fore are transmitted through the bearing to the vehicle. The Z
component is aligned with the bearing axis, and the rotation of
the case must be controlled by a torque generator about the vy

axis. The single Z component can be written as

M7 casel ~ chr 7+Jp3 @ + pCy + qSY Co (Eq 6.2.10)

y casel consists of a torque generated part, a load, and a

viscous friction. Applying these to equation 6. 2. 10 gives for

each of the controllers the following.

. _ d
Controller 1 Let F1 = chr dt + C

Mpgr ¥ Mpy =Fyp 7 * Jp By @ # pCyy + asy,) Gy
(Eq 6. 2. 11)

Controller 2 (v, = v, + 180°)

Mpge * Mpg = Fo vy + Jszz (@g - PCyg - aSv,) Cay
(Eq 6. 2.12)

Controller 3 (73 =7 - 900)

MTGS + My g = Fgvg + Jp333 (a3 + pSvg - qC‘Y3)Coz3

(Eq 6. 2.13)
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Controller 4 (74 =7 * 90°)

. [
Mrae * Mpg = Fy 7y +9, Bylay - pSy, +aCyj)ce,

(Eq 6. 2.14)

Combining Controllers 1 and 2 in accordance with the logic that

Yo = =Y and @ = g, and making the further stipulations
that

MLZ =0

Ll T g2

. (Eq 6. 2.15)

J =J

P _Bl P, 32

F, = F2

which implies that the two controllers are geared together gives

_ MGl
1~ 2F1

M - 27J BPC‘YICQ
p (Eq 6. 2. 16)

The assumption that :11 = &2 is not exact because the @y and a,

gimbal axes cannot be easily geared together, but if the variables
are enclosed in an error position control loop the assumption is
believed valid. Note that the gearing of controllers 1 and 2 com-
pletely eliminates the cross coupling effects of q and o , and
leaves only the primary attitude rate variable, p, of the loop.
This is an important advantage of a system using two controllers

operating back-to-back.
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In arriving at the result of equation 6. 2. 16 it must
not be overlooked that an important assumption is that the angles

ay and a, are maintained approximately equal. This assumption

gives the two-degree-of-freedom controllers the characteristics
of a single-degree-of-freedom controller in that the o axis is
approximately rigidly restrained unless all four of the controllers
move in the same direction as a unit. In principle this may be
accomplished by wiring the torque generators controlling the

o axis in parallel and requiring the torque generators to have a
high back emf.

Combining controllers 3 and 4 under the conditions that
the two are geared together and driven by controller 3 gives

for similar assumptions to equation 6. 2. 15 that

»
. M + 2J B4qCv,Ca
5. - TGS D 3 (Eq 6.2.17)
3 2T,

Note that in this equation for pitch control that the cross coupling

effects of ‘roll and yaw do not appear in the equation.

6.3 Response of the Controllers to Moments Applied by

the Yaw Torque Generators

Following the procedures of the previous section

di | _ .
dt_II _ZMg].mJI (Eq 6. 3. 1)

Then it may be written that

2 Mgim_l GIM Hl g * WI,GIMw H| gru (Fq 6. 3. 2)

where H=H_ <4+ H
r g
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Now from Appendix D the angular velocity is
"pCy + qSy + &

p g = |-PSY #dCYCa + (r + V) Sa (Eq 6. 3. 3)

(pSy - aCy)Sa + (r + ¥)Ca

-

Using the approximation of equation 6. 2. 4 one would first

re J GIM

and we must use the following from Appendix E

guess that H vanishes; however, such is not the case

7 @
|

b
“

1=}

H| —— 0 (Eq 6. 3. 4)

0

This step can be justified by considering the complete equations

in Appendix E.

o e N oﬁ
Jrga - (pStY - 9Cv) Sa + (r + ¥)Ca JpB
ZM . = 0
glml_] GIM
pCvy + qSvy + alJ ‘
L [ ] p’8 _J
(Eq 6. 3. 5)

The Y component vanishes only for the assumptions made herein,
which means there are no large torques transmitted about the
spin axis of the rotor. Here we are interested only in the X
component since the Z component will be transferred through

the gimbal to the case where a component of it will appear at the

v axis. Note that the cosine o component can be identified in
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the corresponding portion of equation 6. 2. 9.

Unfortunately, there does not appear to be a simple
method of mechanically connecting the gimbals of the four con-
trollers so that each of these angles are exactly the same.
Therefore, each of the gimbals must be handled separately.
These may be written as follows

Controller 1 Let G1 =J 4 +C

rg dt

. Mrgy * JpP PSvy -aCvy)Say + (r +7;)Cay
1" G

1
(Eq 6. 3. 6)

Controller 2

Mrgg * JpB (pSv, + qC7v) S, + (r - 'Yl)Cafz
2 G

2
(Eq 6.3.7)

Controller 3

. Mrpgs * JBB (pCv4 - CIS'Y3)Soz3 + (r + 73)c0,3
3

@3 = G
(Eq 6. 3. 8)

Controller 4

& MTG4 +JpB ('pC'Y3 - q873)8a4 + (r - 73) CC‘(4
4 G

4
(Eq 6. 3.9)
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In the above four equation it is assumed that Yo ==Y V4 = "3
and that JpB is held constant.

If it is assumed momentarily that the o gimbal axes
can be mechanically geared together then one may sum the yaw
moments of the four controllers. Since the angular momentum
of each controller is identical a summation of yaw moments can
be accomplished by first finding the average gimbal rate by sum-

ming the four gimbal rates. This gives the following equation.

ZMTG + JpB [(pS'y1 - qS'yg)Sa + 2r Ca]
2G

. (Eq 6. 3.10)

In this expression the moment applied by the torque generator,
MTG , 1s applied to each of the four gimbal axes. Note that

unlike the previous equations for 5/1 and 1'(3 the cross-coupling

rates p and q do not vanish although they are multiplied by the
product of two angles which may remain small. However, the
large cosine components of the cross-coupling rates do drop

from the equation as do the terms in '?1 and 1'/3.

It is proposed to gear the @ gimbals together electrically
by finding the average gimbal angle and comparing this with the
angle of each gimbal separately in an error feedback loop. The

equations for this operation are contained in the next section.
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6. 4 Torque Generator

The control power requirements for the gyro controllers
are insignificant compared to the power required to drive the
rotors at operating speed as will be shown, and since the peak
torque requirements are small, either a direct current motor
or a two phase alternating current motor is applicable. The
ideal torque-speed characteristics of both types are the same

to a first approximation.

I8+ BO+M =K.V (Eq. 6. 4. 1)

where

motor position angle

1]

6
JM motor moment of inertia

viscous friction constant

B
ML = load torque
KT = torque constant

VM = input control voltage

The motor is geared to the controller with a gear
ratio p > 1; therefore, the torque applied to the controller
gimbal is

Mg L

The angular relation between the motor position angle

and gimbal position angle is

pa for yaw control

pY for roll and pitch control

(Eq. 6. 4. 3)
This gives for yaw control

My = Kpe Vi Jye @+ Bo’a)

(Eq. 6. 4. 4)
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and for roll and pitch control
' 2‘- 2w
MTG—KTpVM- @Mp ¥4+Bp 7) (Eq. 6. 4. 5)

Combining equations 6. 2. 16 and 6. 4. 5 gives for roll control

[ ]
KnpVy, -2 J,B8pCv, Ca :
Y = T M T ,,P 1 (Eq. 6. 4. 6)
1v
where
_ 2\ d 2
Fly—(Zchrd-JMp)dt +(2c +Bo%)
Likewise for pitch control
. KrpVy +2JpBqCy, Ca
V3 = XM 7 3 (Eq.6.4.7)
3v

For yaw control the four controllers give separately

the following relations.
o2\ d 2
Let Gy, ‘(Jrg tIye >ET "‘(C +Bp°)

_ KTp VM +JPB [(pS'yl - qC'ylﬁafl -+=(r +71>Cafl]
17 Gla

(Eq. 6. 4.8)

. Kpp Vg +IpB [(p S, + qC'yl)Safz + I‘—'Yl)Caz]
2 = G

2a

(Eq.6.4.9)

153




° Y
s _KpeVy+3p8 [(p Cvy- 57, )Saz +(r +73>C03]

3 G

3a

(Eq. 6. 4. 10)

Y
a, =

4

: . .
KppVy *JIpB [('p Cvg- qS“’3)'5"4"’ - ”4)0"4]
G4a
(Eq. 6. 4. 11)

In the above equations subscripts have been omitted, but each of

the equations requires its own characteristic parameters.

Since all controllers are slaved to the position angle of
the average controller, the relation for the motor voltage of a
typical controller is as follows.

V= Vmz - Kp P (al - "‘ave) (Eq. 6. 4. 12)

where VMZ = error voltage and K, = feedback constant.

Substituting equation 6. 4. 12 into the above four equatiohs gives
the following when written in terms of position angles.

Controller 1

L .
KrpVmz * Ko P et Jp 3[@ $7,-9 C”l)s"l*' r*"’l)c‘ﬁ ]

a
|
dt(Gm) +Kgp

1

(Eq. 6. 4. 13)

Controller 2

KrpVmz*KgPay e ¥Jp B[@’ Sy, *4 071)5"2*6":’1)‘3"2]
T (G?ap +Kgp

02!

(Eq. 6. 4. 14)
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Controller 3

= KTpVMZ"'KGp ave+JPB[<pc73qu'YS} + r+73>C03]

dt KG3a/ +Kgp

@3

(Eq. 6. 4. 15)

Controller 4

v +K

.
o = KTP MZ gPa av +JPBKPC'Y3 q873}a’ ("YQCQ’4:|
! 47 (Gyp) + Kge

(Eq. 6. 4. 16)

If we assume that the gimbal angles are held approximately
equal such that Cal = Ca/2 = Coz3 = Car4 , then the operation of
finding the control moments contributed by the four controllers
can be accomplished by first finding the average \}alue of the
gimbal rates by combining the last four equations. This gives

for the average gimbal rate the following

L J
ZKT P VMZ +JP B[@) S'yl-qS'ya>Sa+2 r Ca]
ZGQ

o =
(Eq. 6. 4. 17)

Where G, =Qrg + I ) St + C+ Bp®)
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6.5 Attitude Sensors

The primary source of guidance, navigation, and attitude
information for a spacecraft is from external sightings. As was
shown in Chapter 4 the ambient fields around a spacecraft are
too feeble to drive a practical sensor, and this implies that some
type of star tracker must be provided if the spacecraft is to be
self sufficient. A control system can control the attitude of a
spacecraft only to the precision provided by the attitude sensor,
and the design of a highly linear sensor is a problem within it-
self. As done by other investigations of hardware for applying
torques to a spacecraft, this thesis assumes a linear sensor
for each of the three attitude reference axes of the spacecraft.
Accordingly the following equation is assumed to represent
the sensor.

Kex Kex 0 0 ’—‘r -9 Vex
0 K K 0 &-~-0 = A%
sy ey r cy
0 0 Ksz Kez|| ¥~V Vez
— JE —d e
(Eq 6.5.1)
Kq = sensitivity of sensor
Ke = sensitivity of error amplifier
d)r = reference angle
¢ = vehicle attitude angle
Vc = voltage signal to tandem compensation

Any practical sensor has linear characteristics over
only a small range, and the effects of saturation will be consid~

ered in a later section concerning the position control mode.

156




6.6

Tandem Compensation

To accommodate the provision for shaping the error

signal before it is fed to the control system torque generators,

a transfer function which is presently undefined is inserted into

each control loop. The following equation applies.

C

0 0
CY 0
0 C

v

A%

-

——

CX
A%

Cz

Cz

v

A\

v
—

MX
MY

MZ

—

(Eq.6.6.1)

voltage signal to tandem compensation

transfer function of compensation

voltage signal to torque generators

It is not anticipated that any tandem compensation will

be required in the examples of this thesis. In an actual problem

certain regions of the s-plane may be denied to the control sys-

tem designer because of unstable modes of the airframe, etc.,

and for this reason space in the equations has been provided

for tandem compensation.
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For convenience we write equation 6. 8, 1 in shorthand notation

as follows.

ZM(12-34-1234)‘JA =2H [A] 6.-0|+ 4 H? [B] q

P

>

PR

(Eq 6.8.2)

where [A] and [B—] are the indicated matrices and (aij) and
(bij) are typical elements of these matrices.

To obtain the equation for the complete closed loop

system we substitute equations 6. 8.2 and 2. 4.5 into equation

2. 3.3 which gives the following.

-

I

) +4HDb

42 2. 4

11 dt

-2Hall

g
{‘lH by 1t

(2 d
{"‘H b31&}

dt™

r- -
(IZ - Iy)qr
(IX - Iz)pr
I -1I)gp
- Y * J

2. d)\
(o]

I —+4H by,
ydt2 22 dt

-2Ha22
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Equation 6. 8.2 represents the complete loop of the
attitude control system, and as can be seen there is non-linear
interaxis coupling between the three loops as well as non-linear
terms arising from the Euler inertia-cross coupling. If it is
assumed that compensation is applied to the loops as set forth
in section’ 3. 6, and also compensation for the inertia-cross
coupling terms, the following expression is found for the roll

attitude angle.

d—é“l’ 2 ﬂ_ = -
=5 t4Hb gt -2Ha, ;¢ =M_-2Ha ¢ (Eq 6.8.4)

Similar expressions can be written for 6 and §.

If the angular motions of the o axes of the controllers

are restricted to small angles then the following equations apply.

2
4944 2d¢ = +
IX Flydtz (2 HC'yl) 3t 2 HC‘lexd) Fl'y Mx 2 HC'lexd;r
(Eq 6.8.5)
2
d o 2d6
LY+ £do 4 = n
Iy FS_Ydtz (2 HC-yS) I 2 HC'y3 Ky@ F3'y My 2 HC')/3Ky9r

(Eq 6.8.6)

2
d 2d _
1,G, —‘Edtz + (2 Hca>—d§§i +4HC2K 4= Ga M, + 4HCa K y_

(Eq 6.8.7)

161




_ 2, d 2
where Fl’Y = (2 chr +JMp )'Z’lt +(2C + Bp9)
2, d 2
= + = - +
F3'y (2chr JMp )dt (2C Bp7)
2
- 2,,d + (C + Bp")
= + —_—
G, = Ugp T Iyr )5

the constants for the different axes may not be equal.

Block diagram representation for the above equations
are contained in Figure 6,8, 1 and Figure 6.8.2. Figure 6.8, 1
contains the roll and pitch channels whereas the yaw channel
is shown in Figure 6.8.2 in two parts. Part (a) shows the four
individual controllers driven by the same error voltage. To
keep these controllers to the same angle their output angles are
averaged and then compared with the actual output gimbal angle.
The error is then fed back to the gimbal torque motor. Part
(b) of Figure 6. 8.2 is the result of ideal controllers and repre-

sents equation 6.8. 7,
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PART (b) SIMPLIFIED REPRESENTATION OF EQUATION 6.8.7

Figure 6.8.2 Block Diagram Representation of the Position

Control Yaw Equation for Uncoupled Motion,
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6.9 Rate Control Equations

The purpose of the rate control is to provide the
astronaut with a means of slewing the vehicle at a particular
attitude rate. Since the position of the gimbal angles are
directly related to the amount of control system angular mom-
entum transferred to the vehicle, the gimbal angles represent
attitude rates. Therefore the rate control is eSsentially an
error feedback control loop to control the gimbal angle, and
the block diagram of the roll channel is shown in Figure 6. 9. 1.
During this operation the error signals from the vehicle attitude

sensors are open circuited.

During the rate control maneuver the voltages to the

torque motors are given by the following equation.

—

T r I ]
Vomx| 'K'yl 0 0 Yir T 1
Voyl= 1 © Kz O0flvg, - 7 (Eq 6.9. 1)
Vmz 0 0 K, | ¥p T @
— - =~ J L -

The voltages given by equation 6.9, 1 may be substituted into
equations 6.4.6, 6.4.7, and 6.4. 17 to find an expression for
the gimbal angles as a function of the rate variables and the

rate inputs., For shortness we write

K=KKpX

1 vl tx
K2 = K’Y3 Ktypy
K3 - Ka Kta Pa

which gives the following matrix equation.
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d .
Flyd_t K, 0 0 2
0 F, & +K, 0 vo| =
3ydt 3
d
= +
0 0 Gdt KS L
1T 1.
K7y -Cy, Ca 0 ofllp
Kyvg, | ¥ 2H 0 +Cv3 Ca 0 q (Eq6.9.2)
S'ylSa S'ySSa Ca
Koo + - - +—it r
_ 3'r ] 8 4 4 4;, ]

The above matrix equation must be solved for the gimbal angle
rates so that these rates can be applied to the control system
represented by equation G.2. 11. Because of the non-linearities
caused by the sine and cosine terms of equation 6. 9.2, the
Laplace techniques are not simple to apply unless the angles can
be considered constant. Therefore, in the equations that follow
the notation employs the letter s so that a closed form solution
can be written, but this symbol s refers to the Laplacian oper-
ator only in the special case where sine and cosine values of
the gimbal angles can be considered constant. Otherwise, for
cases where the gimbal angles make large changes, the symbol

s must be interpreted as a differentiation with respect to time.

Solving the matrix equation 6. 9.2 for the gimbal angle
rates and substituting in equation G. 2. 11 gives the following
expression for the moments generated by the spacecraft control

system.
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As in the previous solution, rewrite equation 6. 9. 3 as follows.

M Rate
ControlJ A

=2 H

- CaCv, SK,
ET?';”?—KT Yir
N
'CozCVB SK,,
‘ \}\SF37"+' K2>73r
|
12 Ca SK

;
\SG +'_KJ> .
03

p
+4H2 [EJ q
r

(Eq 6.9.4)

Substituting equation 6. 9.3 and 2. 4.5 into equation 2. 3. 3 gives
the following equation for the response to rate control.
- ' - N -
2 2 2 - _
(IXS +4H ell) (4H 612) (4H e13> P (IZ Iy qr)
sH%e 1S+ 4n% 4H%e al+1{. -1) prl=
21 y 22 23 X Tz
4H2e 4H2e I S+4Hze r I -I' ap
31 32 . Z 33 y X
' - .
- CanlKIS
—r v
SFl’y K1 1r
2 CO(C’}/SKzS
M - ZM - 2H = T+ Y
extJA VM| 5 SF;, K, 3r
2 Ca K3S
SG_ *TK Yr
o 3
L -
(Eq 6.9.5)
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The uncoupled set of equations for roll, pitch and yaw
is given by the following.

M_(SF, +K.) + v,_ (2HCv.K,S)
p=—X_1y 1 1r 121 (Eq 6. 9. 6)
+
SU,F .S+ LK *+ (2HCy) )

M_(SF, +K,) - v, (2HCy,K,S)
q = —L—3% +2 1‘:1‘ 31;; (Eq 6.9.7)
SU Fy S + LK, * (2HCry)

M_(SG_ + K,) - o (4HCaK,S)
=2 3 % (Eq 6. 9. 8)
S(IzGaS + I Kq + (ZHCa) )

The following equations are valid for the rate input
commands which drive the gimbal angles to large values in

those cases where there is negligible inter-axial coupling.

For Roll

y + = -
Fiy7 TKy7y = Kpvy - 2HCy P

. . (Eq 6.9.9)
= - +
Mx 2 HC‘yl'y1 pr
For Pitch
*
= +
F3,73 7 K73 = Ky, ¥ 2HCy39
. . (Eq 6. 9. 10)
= +
My 2 HC'y3'y3 Iyq
For Yaw
Ga + Kga = Kga + HC_r
(Eq 6.9.11)

= +1 1
Mz 4HCa a Izr
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For the completely general case it is necessary to

solve equations 6.9.2, G.2.11, 2,4.5, and 2. 3.3 by machine

computation.
Ky
Mx
- Y u + N' d t P
Kyt Krr P — | -

Fiy =(2Jcgr+JmMp*) s+(2C+8p")

2HC Yy,

Figure 6.9.1 Block Diagram Representation for Roll Channel
of the Uncoupled Rate Control Equation.
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6.10 Summary

This chapter has served to derive the closed loop
equations of motion of the spacecraft. Examination of the
closed loop position control equation 6. 8. 3 and the closed
loop rate control equation 6. 9. 5 confirms the fact that the
equations are coupled from control interaction as well as the
Euler rate-product terms. Therefore, a completely general
solution requires assistance from a computer. One of the
reasons for choosing the four controller system is that many
of the large cross-coupling terms in the primary control
matrix vanish, and since the four controller system is a zero
momentum type system the cross-coupling terms of the gyro-
scopic coupling matrix are small. Cross-coupling is a problem
in any type of flying machine if we expect to actuate the con-
trol of two axes to their full travel simultaneously. Generally
speaking vehicles are not operated in this manner, and if
crossed controls are required one of the axes will predominate.

In the following chapter the equations of motion are
solved to determine the response of the vehicle. This is ac-
complished by assuming no interaxial coupling, and solving
the equations analytically. Making this assumption, many of
the equations can be solved in closed form whereas others
require graphical methods. It is believed that this approach
gives a better understanding and presentation of the system
than a pure computer solution which gives graphical response

of the vehicle to input disturbances.
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CHAPTER 7

DYNAMICS OF THE SPACECRAFT

7.1 Introduction

This chapter evaluates the response of the spacecraft
using the equations developed in the preceding pages. This is ac-
complished by assuming that the interaxial coupling among the
three control axes can be neglected. This assumption is valid
provided the control system is not appreciably saturated, and
that the astronauts do not attempt to simultaneously actuate the
controls to yield large rates about two axes. In any event, a
necessary condition is that the attitude control system must per-
form satisfactorily about each of the individual control axes so
that initial analysis of the equations of motion on an uncoupled
basis is considered reasonable. Also, several parameters of the
system must be numerically chosen, and their selection is greatly
simplified using uncoupled equations. These parameters include
the damping coefficient of the controllers, the gain of the rate
control loop, and the gain of the position control loop. It is visu-

alized that the spacecraft will be operated in one of three modes.

1. Zero Input Mode
2. Rate Control Mode
3. Position Control Mode

In addition to these three modes, a mode called the Adaptive

Mode will be discussed.

The zero input mode is that which results when no signal
is provided to the torque motors of the controllers. The control
system then operates as a rate stabilizer, and the gyro controllers
provide inherent sensing. The stability of the zero input mode
will serve as a criterion for the selection of the damping coefficient

of the controllers. The damping coefficient is then held constant
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for the other two modes. The purpose of the rate control is to
command the spacecraft to perform a particular attitude rate.
The stability of the rate control mode will be used to ascertain
the gain of the rate control loop, and the stability of the position
control mode will determine the gain of this loop. The adaptive

mode is the vehicle response to a controller failure.

The damping chosen for the controllers differs appreciably
from that used in systems which overdamp the gyro to the point
that it can be approximated as a first order system. In the present
design the controllers act as a true second order system with
two poles having both real and imaginary part's. This of course
complicates the solution of the equations, some‘ of which cannot
be solvéd in closed form. Therefore, in many of the equations
which follow it is necessary to approximate the second order

system by a first order system to arrive at useful results.

As was done in Chapter 5, the analysis will be accom-
plished using the equations for roll. The equations for pitch con-
trol are almost precisely the same as those for roll, and generally
the same parameters are required except that the numbers will
_differ because of different moments of inertia of the spacecraft
about the roll and pitch axes. The yaw equations differ slightly
from those of roll, and a summary of the differences will be
made.
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7.2 Zero Input Mode

The uncoupled equations for the zero input motion are
given by equations 6. 8.5, 6.8.6, and 6. 8.7 where the position
input terms have been dropped, and these equations are written
as follows.

F1 Mx
p= X 5 (Eq. 7.2.1)
IX Fl',rs +4H" (C ’Yl)
F, M
q=——3Y L > (Eq. 7.2.2)
I Fg, S +4H (C7y)
G, M
r= Z (Eq. 7.2.3)

I G 8+ 4H2 (Ca)?
zZ Q

The stability of the spacecraft for the complete range of
gimbal angles can be investigated by assuming small perturbances
wherein the gimbal angle can be taken as a constant. Consider the

equation for roll motion and let Fl'y which is actually equal to
F, = CZJ + J 2) S + <2C +B 2> be written, for short-
1y~ cgr mP P ’

ness, simply as Fl‘y =Js + k. This gives
M (s+ k/J)
X

4H2 (C‘yl)2
I s2.+ ks +
X J IXJ

(Eq. 7.2.4),
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The motion follows that of a second order system with a damping

{ T
k = (Eq. 7.2.5).

&= THCy VI

ratio

and a natural frequency.
2H C'yl
A
Doy 1J

(Eq. 7.2.5)

The effect of the disturbance is least when the gimbal angle is

small for which the following are defined

-k Ix °
to 28 ¥ T (Eq. 7.2.6)
w =—2H__ (Eq. 7.2.7)

The solution for the response of the system to an impulsive mo-
ment, Mo’ for the lightly damped controller is given by the fol-
lowing equation.

/ 2,2
M Cvy -0 w_t o o _ Cvy-8
Io 1 e oo sin wg C'Y%-éi t + tan 1 ——lg—o"
veo-g 2 °

(Eq. 7.2.8)

p=

Examination of this equation shows that the roll rate is always
stable for any gimbal angle less than 90 degrees because the ex-
ponential damping factor is not a function of the gimbal angle.
Critical damping occurs when C'yl = to and the solution for this

motion is given by the following equation.
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M - -0 w_t
-9 oo
p= Ix [Qowot + 1 e

(Eq. 7.2.8)

The highly damped motion can be approximated by assuming that
the gimbal moment of inertia is negligibly small giving the fol-
lowing equation for roll rate.

M 1
p= X
I 412 (Cv,)?
S +I—k 1
b
(Eq. 7.2.9)

The solution to this equation for an impulsive moment disturbance
is given by

_4r%er]

o
p= e Ik
IX b4

(Eq. 7.2.10)

In terms of previously defined parameters this motion can be

written as follows.

p= e (Eq. 7.2.11)

M
-9
I

X

The analysis of the response due to a step moment dis-

turbance is much more difficult to analyze because the gimbal
angle cannot be assumed constant. As a beginning, however, let
us assume that the moment is small enough that first order dyna-
mics can be used in which case equation 7. 2. 9 is considered.
Further, let the gimbal angle remain small so that the cosine of
the gimbal angle can be approximated as a value of one. A step

of M1 at time zero gives the following.
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p=—-p\1-¢ (Eq. 7.2.12)
4H

The final value is seen to be independent of the moment of inertia
of the vehicle. The roll rate of a vehicle without an attitude control
system in response to a step disturbance moment is given by
M1 )
P =7 t (Eq. 7.2.13)
X

The roll rate of a spacecraft without a control system compared
to that with gyro controllers both of which experience a step mo-
ment disturbance is given by dividing equation 7. 2. 13 by 7.2, 12

as fqllows.

Pwithout control system _ “o " 1
Pwith gyro controllers 28, ‘ -w
g t
1-e 2 go
(Eq. 7.2.14)
“o
The factor 2T is the reciprocal of the time constant for the

gyro controller and the factor is large for fast controllers, so

that the ratio is plotted initially as a steep curve in Figure 7. 2.1.
The effect of saturation of the gyro controllers is sketched in to

show that the ratio approaches unity as time increases.
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The solution for a step moment disturbance wherein the
controller gimbal angles move through their complete range is
solved by a phase plane analysis, however, first consider the
special case of recovery from a large roll rate in the absence
of external moments. The solution for the gimbal angle has been

determined as follows.

Yy = arc tan { e tan Yo
(Eq. 7. 2.15)

Using this relation for the gimb'éi angle gives the following equa-
tion for the roll rate.

= in | arc tan an =y
P =Pax S0 ct e tn_’yo

(Eq. 7. 2. 16)

These equations are plotted in Figure 7. 2. 3 for an initial gimbal
angle of 89 degrees.

P/Pmox 1.0
90°;

08

"
Y, 60°; ’ 10§
7, (0)=89°
d
043
30°
0.2
0° r
0 2 4 6 8 10 2
wol
2f,
Figure 7. 2.3 Plot of gimbal angle, Yy and non-dimensional

roll rate, Ip /p for spacecraft controlled by two gyro control-

max’ -
lers with initial condition of ‘y-l(O) = 89 degrees. Total angular

momentum of system is zero and there are no external moments.
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6 | S
g 5 |— q. 7.2.14
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xF_ o — . S
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EFFECT OF SATURATION
2 OF GYRO CONTROLLERS
CURVE APPROACHES
| ONE ASYMPTOTICALLY

Figure 7. 2.1 A plot of the ratio of roll rate of an uncontrolled

spacecraft compared to a gyro controlled spacecraft both of

which experience a step moment disturbance. Dotted curve is

undocumented.
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This special case of recovery from a large roll rate in
the absence of external moments also has a simple phase plane
solution as follows. As shown in Figure 7. 2. 4, plot the following

equations for selected values of gimbal angle.

(2HCy,))?
p+Tk—‘- p=0 (Eq.7.2.17)
b'q
P=P_ ., 57 (Eq. 7.2.18)

The trajectory is determined by intersections of lines of the same
gimbal angle. The times of the trajectory can be found from the

ratio Ap /f) and from this the curve roll rate versus

average’

+< 3
time can be plotted. Thereafter, roll rate can be integrated to

find the roll displacement as follows.

¢
¢ = S‘ pdt (Eq.7.2.19)
¢(0)
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2H ¢

k

I'igure 7.2.5 The relationship between gimbal angle and roll

disiplacement for the zero input mode with zero initial conditions,

183



A closed form solution of equation 7. 2. 1 is difficult even
when only the first order dynamics are considered. There is,
however, a direct relationship between the vehicle attitude angu-
lar displacement and the gimbal angle. For example, the follow-
ing equation is always true for zero initial conditions and for zero

input to the controller.

J&'1+ky°=-2HCyp (Eq. 7. 2. 20)

Considering only first order dynamics the equation can be inte-

grated to give the following result.

2H¢

o

v = 2 arctanq e -% (Eq. 7. 2.21)

This equation is plotted in Figure 7. 2. 5.

An approximate phase plane analysis can be made of the
position input mode operating to minimize a step torque distur-
. bance by assuming that ¥ is constant. The first order differential

equation approximation of equation 7. 2.1 is given by

2 2
. 4H7(Cy) M

X X

This equation is plotted in Figure 7. 2. 6 for various contours of

Y which also represent contours of constant time since

Ay
At =——1- (Eq. 7. 2. 23)
"1
Since increased gimbal angles demand increased values of the
roll rate, p, it is clear that f) must also increase. At the end of

the transient when p = M, k/4 H2 s f) is very small, but its

average value over the interval from vy = 0° to Yy = 10° can
be found by reading from Figure 7. 2. 6 the value of
AP
M_ k
X
4 12
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and computing f’ave from the relation

-A4p

[ ]
pave = At (Eq. 7. 2. 24)

Figure 7. 2.7 is an analog simulation of the zero input mode and
shows that v holds constant at -M/2H until the gimbal angle gets
beyond about 40 degrees. A phase trajectory determined by the
method outlined above is shown in Figure 7. 2. 6.
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Figure 7.2.6 Estimated Phase Trajectory for Zero Input

Mode Response to a Step Moment Disturbance.
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All of the equations for zero input control have been presented

in parametric form with no actual numerical values substituted in
the equations. Therefore, the equations are valid for any general
twin gyro controller system where interaxial coupling is negligible.
The zero input mode is purely a rate stabilization system. It has
been shown that an impulsive torque disturbance acting on the
vehicle will cause the spacecraft to roll through a displacement
angle, but that the roll rate will damp to zero. A step moment
disturbance will cause a steady state roll and consequently an in-
creasing roll displacement. The zero input system is primarily

a rate stabilization system and the parameter which can conven-
iently be chosen to give the desired response is the damping
coefficient, k, of the gyro controller. It is not necessary at this
point to choose a particular value of k other than to say that this
quantity is chosen on the basis of equation 7. 2. 6 which solved for

the damping coefficient is written as follows.

k=4HL [ (Eq. 7. 2. 27)
X

From a practical standpoint all of the quantities in equation
7.2.22 except t.o are dictated in the design by other considerations.
IX concerns the overall vehicle design and is determined by the
mission and the detail design of the spacecraft. The angular mo-
mentum of the controller, H, is determined from controllability
requirements, and the combined inertia of the gimbal, case, and
rotor, J, is to be determined by optimum design of the controller
to minimize the ratio of the total mass of the controller compared
with the angular momentum of the controller. This leaves the
parameter ?;o which is to be chosen by the desired location of the
closed loop poles of the zero input mode. Although the damping
coefficient, k, is chosen primarily on the basis of the desired
response to disturbances of the zero input mode, the choice does
affect the other modes. For example, the closed loop poles of

the zero input mode will be the open loop poles of the position
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control mode. Therefore, let us delay the numerical choice of
the damping ratio, go, until the equations of the other modes

have been examined. "

+4 -
+2 -

10%p DEQRRES / SECOND
o

-4 |-

+08 |-

+04 /‘
o L

-04 |-
-0.8 |-

¢ DEGREES

+5, |-

100 );DE‘REESI SECOND
[~]

+80 -

@ +40 |-
Sramr

g &
(L3
a 40
A )

—80 i+ 10SEC ~|

: 4¢1000 SEC -
TRANSIENT COMPLETE RUN :

Figure 7.2.7 Spacecraft Response in Roll to a Step

Moment Disturbance of 10 Ib-ft, I = 10% 1b-fi-sec?,

J = 10 b-tt-sec® H =10% Ib-fi-sec, &, = 0.866. Data from
Analog Stimulation.
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7.3 Rate Control Mode

The equations for rate input control given by Equation 6. 9. 9
can be solved graphically by a plot similar to 7. 2. 4 where the
trajectory is defined by the intersections of lines of equal gimbal
angle. For this solution equation 6. 9. 9 is written in a slightly
different form which, neglecting the external moment disturbance,
is as follows.

o, 2HCY? Ki 2mCy
P"7 1T x P ‘(711«'71) Ik

(Eq. 7.3.1)

This equation is plotted for p versus p in Figure 7. 3.1 and gives
contours of constant gimbal angle which slope from left to right.
The second equation needed is that of equation 7. 2. 18 which is
the requirement that angular momentum is conserved. This
equation is plotted in Figure 7. 3.1 as vertical contours of con-
stant gimbal angle. The intersections provide the solution. The
gain of the gimbal position control loop, Kl’ has been allowed

to have a relation to other parameters of the vehicle as follows.

2
_m4H
1 —-—-——IX (Eq. 7.3.2)

K

The factor m may be called a gain ratio, and Figure 7. 3.1 indi-
cates that for high gain ratios the roll rate is an exponential
represented by a constant slope on the plot ofﬁ versus p. The
effect of the gain ratio factor, m, is shown more clearly in
Figure 7. 3. 2 which is a plot of the steady state gimbal angle
versus the value of the step input. This plot shows that for very
high gain the gimbal angle is linear with the input angle, but for
a gain ratio of one the variation is highly non-linear. If the gain
ratio is less than one, the position control system does not have
the capability of holding the complete range of gimbal angles in
a stable manner. Figures 7.3.3 and 7. 3. 4 further illustrate the

effect of low gain ratios. Figure 7.3.3 shows a plot of steady
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Figure 7.3.1 Phase trajectory for spacecraft response
The external

The response is defined by

to a full step displacement rate control input.
moment disturbance is zero.
the intersections of the lines of constant gimbal angles
plotted for the two equations of motion shown on the

figure.
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state gimbal angle for a step input of ninety degrees versus the full
range 6f gain ratios less than one. Careful inspection of the cur-
vature shows an inflection point at 45 degrees which was shown

to be a peak control power point in section 5. 31. Figure 7.3.4
shows the roll capability for a step input of ninety degrees for

the range of gain ratios less than one.

From a stability standpoint the rate input mode has a natural

frequency from equation 6. 9. 6 equal to

- -
/K1 ‘\ZHCH)

+ =
J I, J

(Eq. 7.3.3)

w =
n

This natural frequency is greater than that for zero input control

given by equation 7. 2. 5.

The product of the damping ratio and the natural frequency

are the same for zero input and rate input. Thus
20 w0 = = (Eq. 7.3.4)

If the damping coefficient, k, is chosen on the basis of zero input

control then according to equation 7. 2. 6,

k=d4HL /—IJ— (Eq. 7.3.5)
. X

Substituting this k into equation 7. 3. 4 gives

4H1;0

2€rwn=/\/—IX_J\ (Eq. 7.3.86)

Then further substitution of K1 in equation 7. 3. 2 into equation

7.3.3 gives

2H / 2
w =F m + (C%) (Eq. 7.3.7)

IX' J
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Therefore,

CO
¢ = (Eq. 7.3.8)

" S m o2

which is to say thatthe damping ratio for rate control is propor-

tional to the damping ratio for zero input control by the factor

1/Nm + (C')/)2 . The greatest difference between the two damping

ratios occurs at zero gimbal angle. Hence,

L. = (Eq. 7.3.9)

Actually, large values of the gain factor m gives more precise
positioning of the gimbal angle as shown by Figure 7. 3. 2, but the
greater this gain the more lightly damped (more oscillatory) be-
comes the rate control mode. It appears that an acceptable solu-
tion lies in the choice of the gain ratio, m, as unity. For a gain
ratio of unity the gimbal angle can be positioned at the full ninety
degree position, yet for the range of 45 degrees or less the curve
for m =1 of Figure 7. 3.2 is approximately linear. A gimbal
angle of 45 degrees gives more than 70% of the maximum roll rate;
therefore, it is not likely that the vehicle will be operated at
angles of more than 45 degrees except for the full roll rate posi-

tion of 90 degrees. For unity gain ratio

4

o)

Cr = «/—; (Eq. 7.3.10)

By cross-plotting the steady state response to an impulsive
disturbance torque on the spacecraft shown in Figure 7. 3. 5 the
roll rates can be compared with those for zero input mode and
those for no control system aboard the vehicle. For unity gain
the rates are approximately one-half that of a vehicle without a

control system.
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Figure 7.3.5 Plot of steady state roll rate versus
magnitude of torque disturbance impulse for rate control
mode. Infinite gain ratio corresponds to controllers that
are held rigidly fixed in the vehicle, and is the same as
vehicle response with out a control system. Zero gain

ratio corresponds to zero input mode of section 7. 2.
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7.4 Position Control Mode

The position control mode is formed by closing an attitude
angle feedback loop around the zero input mode. A convenient
method for studying the position control mode is a locus of roots
which is a useful technique found in most control theory texts.
Using root locus theory it is known that the closed loop poles of
the zero input mode form the open loop poles of the position con-
trol mode. Therefore, the open loop equation for the position
control mode can be written for roll motion as

K2HC'Y ¢+F M
1 ly " 'x

Popen = i v 5+ 41 (0D

where the gimbal angle must be considered approximately con-

(¢

(Eq. 7. 4.1)

stant. The closed loop equation is given by

(K 2H c~yl>¢ +Fy, M,

3 z
<1X 1~Ys + 4H @71) s+KX2Hc~yl>

(Eq. 7. 4,,2)

The poles of the denominator of equation 7. 4.1 are to be deter-
mined so that the position control mode has good response to input
commands and to minimize the disturbances of external torques
on the spacecraft. An interesting theorem which applies to a con-
trol system with no zeros and three open loop poles, one of which
is at the origin, is as follows: the natural frequency of a unity
feedback control system having no zeros and three open loop
poles, one of which is at the origin, can never be greater than the
natural frequency of the system operating open loop. This theorem
is easily proven by substituting jo in the characteristic equation
of the closed loop system and equating the imaginary part to zero.
Thetheoremis illustrated in Figure 7. 4.1 by noting that all stable

poles of the closed loop system lie within the circle of radius @,
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Figure 7.4.1 Ilustration of four possible geometric patterns
for the locus of roots for the position control mode. The three
poles shown are the poles of the closed loop zero input mode
which constitute the open loop poles of the position control
mode. The closed loop poles of the position control mode will
lie on the root loci depending on the value of the gain of the
position control loop.
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which is the natural frequency of the open loop system. The pri-
mary purpose in Figure 7. 4.1 is to illustrate the four possible
geometric patterns that the locus of roots of the position control
system can have. If the damping ratio of the zero input mode, éo.
is greater than one, then Figure 7. 4.1 (a) applies. If the damping
ratio is less than one but greater than 0. 866 then Figure 7. 4.1 (b)
applies. If less than 0. 866 then Figure 7. 4.1 (c) represents the
locus of roots. The case where C,o is exactly equal to 0. 866 is
shown in Figure 7.4.1 (d). The overdamped case (a) has poor
response at low gains, and it becomes too oscillatory at the high-
er gains. Values of Qo less than 0. 7 are not satisfactory because
the rate control mode and the position control mode both become
too oscillatory. Values of go between 0.7 and 1. 0 give an accept-
able solution so that the vehicle has good response to input com-
mands as well as good response to damp torque disturbances.

As an example of this section let us solve the equations of motion
using a damping ratio of Co = 0. 866 such that the locus of roots
of Figure 7. 4.1 (d) applies. This is not suggested as an optimum
choice but is considered to be an example of a satisfactory loca-
tion of the closed loop poles. Choosing a value of KX such that all

three closed loop poles coalesce gives the following equations.

2
K_= 0.7 1 (Eq. 7. 4. 3)

VIXJ

3
, - 0.1920 C“Yl¢r+<3+ 3@. 577@0)>MX/IX

=3 2 S 2 T
s%+3(0. 5770 )%+ 30. 5770 )X (Cv, ) s+0. 19207 Cvy
(Eq. 7. 4. 4)

where W, is natural frequency of zero input mode given
by equation 7. 2. 7.
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To further explain equation 7. 4. 4, if the cubic denominator

is written in the following form

<s2+ 2, v, S +wnz> G+8)=0 (Eq. 7. 4.5)

then the solution chosen as an example has the following values

for the parameters.

Qp =1 (Eq. 7.4.6)
w, = 0.577 wg (Eq. 7.4.7)
€ = 0.577 wg (Eq. 7.4.8)

The primary purpose of the positioncontrol mode istoenable the
spacecraft to track a reference line. This reference line may be
the line of sight to a .star, and usually in this mode the vehicle
attitude rates are either small or are constant. It is considered
that equation 7. 4. 4 can be evaluated for constant gimbal angles
if we assume that the error signal from the sensor is limited to
some maximum value. In actual practice this limiting will be
accomplished by the saturation of the sensor. If the maximum
error signal from the sensor is ¢e then the steady state roll rate
resulting from the constant sensor error can be derived as the

following equation.

2 1/2

(Eq. 7.4.9)

This curve is shown in Figure 7. 4. 2 and shows that for a given
error signal, d)e, there are two solutions for roll rate. The
solution at the higher rate is unstable for the same reasons that
the initial point at Prax is unstable in Figure 7. 2. 4. Therefore,
to avoid all possibilities of the position control mode being un-

stable the error signal from the sensor is limited to that giving
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a maximum gimbal angle of 30° which allows the position control
loop to drive the rate of the spacecraft up to one-half Prax This
limiting also enables the stability analysis of the position control
equations to be accomplished with a constant gimbal angle. Thus
for small gimbal angles the position control equation 7. 4.4 can

be written as follows.

_0.192 <.o03 ¢ + l:s +3@. 577%)] M /T,
°= (s + 0. 577%)j

(Eq. 7. 4. 10)

For zero sensor input the response to an impulsive moment dis-

turbance is given by

M
= 2 @. 577w, 2 t> e 0. 877w t
X

(Eq. 7. 4.11)

The response to a step moment disturbance is given by

M 3 uy (t)

1 . 2
% @. 577%)

~0.57T7Tw _t
[0)
e /

3
+ 5 ‘
@.577@ ) @. 577 w ) J
O O

(Eq. 7.4.12)

t2+ 3t

For zero moment disturbance the response to a step position
input angle is given by

<0, 577 o )2 , ~0. 5770, t
¢=¢1 ul(t)— -—'—2—-0—‘(1 +0.577w0t+1 e -

(BEq.7.4.13)
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The response to an impulsive input is given by

go. 5770, ?3 t2  _o. 577wt
¢ = ¢ e

o 2
(Eq. 7. 4. 14)

The response is seen to be well behaved at small gimbal
angles; however, consider the location of the poles of the closed
loop position control mode as the gimbal angle becomes larger.
Figure 7. 4.3 shows the migration of the poles for the value of
Kx chosen in equation 7. 4. 3. This figure indicates that at gimbal
angles greater than 30 degrees the system becomes very oscilla-
tory, andat approximately 84 degrees the system becomes unstable.
The effect of the initial choice in open loop damping ratio, {,0,
is shown in Figure 7. 4. 4 which is plotted for the same Kx' A
smaller KX would of course raise the curve of Figure 7.4.4 so

that in the end a singular point at 90 degrees would result.
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7.5 Adaptive Mode

It has been stated earlier that the four gyro system has
the adaptive feature that permits continuous three axis control in
the event that one of the four gyros is lost. This mode can be
illustrated by assuming the loss of the number four gyro control-
ler and examining the resulting spacecraft response. At the out-
set, let it be assumed that the controller fails such that it loses
its angular momentum at a steady rate over time, tl' Assuming
no interaxial coupling this gives a moment disturbance about the
roll axis as follows.

dH _
T = M, (Eq. 7.5.1)

The moment disturbance is seen to be a step of H/t1 which lasts

for tl seconds, and this gives a total torque impulse of H.

The spacecraft response to such a disturbance can be ob-
tained from the equations of the previous section; however to
illustrate the response for the adaptive mode the problem was
set up on an analog computer and the results are shown in Figure
7.5.1 and 7. 5. 2 for the case where a sensor is providing attitude
errors. The zero input mode also operates to provide rate

stabilization upon the loss of any controller.
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7.6 Summary

This chapter has evaluated the response of the system
to input disturbances and input commands for the zero input mode,
the rate control mode, and the position control mode. The re-
sults are shown in the illustration of the location of the poles of
the various modes shown in Figure 7.6.1. This plot shows that
an initial choice of the damping ratio of the zero input mode, QO,
of approximately 0. 866 gives satisfactory performance for the
rate control mode and the position control mode; therefore, no
adaptive type change in the damping of the gimbal or tandem com-
pensation is required to satisfy all three modes of operation.

The effects of increase in gimbal angle is seen to make the zero
input mode and the rate control mode less oscillatory, whereas
the position control mode becomes more oscillatory. For a fixed
value of gain, KX, there exists a gimbal angle for the position

control mode which makes the system unstable.

The system operating in the position control mode has
inherent adaptive characteristics in that the failure of any one of
the gyro controllers will automatically be compensated for by the

repositioning of the opposite pair of controilers.

The examples have been given for the roll equations.
The pitch equations are almost identical except for the sign of
the gain Ky' The general solution for the yaw equations are
identical except that the functions Fl'y and F37 have been defined
for a pair of controllers whereas Ga is defined for a single con-
troller. Also, the yaw controller uses all four controllers, and

therefore faster response is available, if desired.
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Figure 7.6.1 Illustration of the location of the poles of the Zero
Input Mode (£, =0.866), the Rate Control Mode (m=1), and

the Position Control Mode. The poles are shown for gimbal angles

of zero and 30 degrees to show effects of change in gimbal angle.
The open loop poles of the position control mode are the closed
loop poles of the zero input mode.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary of the General Concepts of the Thesis

The thesis is concerned with the problem of attitude
control of a spacecraft engaged in an extended mission. The
foremost application of such a spacecraft is a manned explora-
tion of the planet Mars. The factors considered in choosing a

suitable attitude control system are

Maximum reliability,

Minimum average power,
Minimum system weight, and
Minimum peak power.

Attitude control systems which do not expend fuel mass
but derive control moments by a time rate of change in angular
momentum of a mass that remains within the spacecraft are
called momentum exchange type attitude control systems and con-
sume only power in their operation. In a space environment,
power is more available and may actually be re-supplied from the
sun, whereas expulsion control fuel is limited to that initially
loaded aboard the spacecraft. Based on this, the main theme of
the thesis is the study of momentum exchange type attitude con-
trol systems.

The thesis proceeds to accomplish five objectives set

forth in section 1.2. In short, these objectives are
derive the equations of motion,

determine the torque disturbances,
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select a specific control system,

determine the response of the spacecraft, and

present the conclusions.

The attitude control system chosen to best satisfy the
spacecraft requirements is a configuration of four controllers
which operate to apply gyroscopic torques to the spacecraft.
Each controller may be described as a gyroscopic type device
having two degrees-of-freedom. The four controllers are ar-
ranged in two pairs with each pair operating back-to-back. One
pair of the controllers is actuated symmetrically to generate
torques applied to roll the vehicle, whereas, the other pair,
mounted normal to the first pair, provides torques for pitch con-
trol. All four of the controllers provide torques for yaw control.
This configuration of four controllers has a redundancy in its
ability to effect a change in angular momentum along each of the
three spacecraft control axes such that the system provides un-
interrupted control upon the complete loss of angular momentum

of any one controller.

The four controller attitude control system is operated
in three modes:

Zero Input Mode
Rate Control Mode
Position Control Mode.

The zero input mode enables the spacecraft to be rate
stabilized in the absence of input commands. The rate control
mode provides a means of changing the attitude of the vehnicle at
the maximum rate capability of the controllers. The position
control mode is provided for alignment of the spacecraft with res-
pect to a reference line of sight. Satisfactory stability charac-

teristics were obtained for each mode.
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8.2

Summary of Chapter Conclusions

Each chapter contains a brief summary, the highlights

of which follow.

Chapter 1:

Chapter 2:

Chapter 3:

Chapter 4:

This chapter introduces the problem of attitude con-
trol. In the practical problem the control system
engineer must have knowledge of the physical charac-
teristics of the spacecraft, the controllability re-

quirements, and the stability requirements.

Chapter 2 contains the equations of motion of the
spacecraft. The torques generated by the control
system depend on the attitude of the controller
rotor with respect to the spacecraft and the rates
and accelerations of the controller rotor with res-
pect to inertial space. The equations are presented
in a manner which facilitates the evaluation of each

of these variables.

One or more controllers are combined to form
various attitude control systems. Control logic is
required to give non-interacting control for the
roll, pitch, and yaw vehicle attitude variables.

A system of compensation is devised to minimize

cross-coupling.

This chapter seeks to determine the torque dis-
turbances acting on a spacecraft. It is determined
that the external torque disturbances can be mini-
mized by design and operation of the spacecraft.
The torques which originate within the spacecraft
from masses which do not leave the system have

a zero mean value and their effects can be com-
pensated for by using a momentum exchange type

attitude control system.
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Chapter b:

Chapter 6:

Chapter 7:

This chapter compared the various systems and
determined that the four gyro controller best ful-
filled the control system requirements. The six
gyro control system is the second choice. Inertia
reaction wheel systems have very low power effi-
ciency, and they lack the inherent stabilizing char-
acteristics of the gyro controllers. Mass expulsion
systems must be provided to some extent to de-
saturate the momentum exchange system, but if
used continuously, large amounts of fuel will be re-
quired unless a limit cycle of the order of 15 min-

utes is provided.

The control loop was closed using the four gyro
controller. A general solution of the equations re-
quires machine computation because of the non-
linearity and complexity of the equations. Three
modes of operation are considered. Zero Input
Mode, Rate Control Mode, and Position Control
Mode.

The response of the spacecraft is found to be satis-
factory for all modes of operation using a fixed
value of gimbal damping. The zero input mode and
the rate control mode become less oscillatory at
larger gimbal angles, whereas the position control
mode becomes more oscillatory. The error signal
from the sensor must be limited to avoid a possible
unstable condition which drives the gimbal fo their

full 90 degree position.
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8.3 Summary of Characteristics of Gyro Type Controllers

The following conclusions are presented concerning
gyro type controllers used to provide attitude control of space-
craft.

a. The use of gyro controllers operating back-to-back
eliminates large cross control moments typical of single gyro
controllers, and this becomes more important as the gimbal

angle is increased.

b. Gyro controllers should be operated without an ap-
preciable amount of saturation in order to minimize gyroscopic
cross coupling moments. This statement is true about any mo-

mentum exchange system, and suggests that zero angular mo-

zero angular momentum in their initial configuration.

c. Except for the unstable, full 90 degree position of the
gyro controllers where no control moment is required, gyro
controllers require continuous control moments to provide an

attitude rate to the spacecraft.

d. During the angular acceleration of the spacecraft to
an attitude rate the torque multiplication for the gyro torquer is

high. The ideal torque gain for a pair of controllers operating

1 /I_x_
2¢ 1 J

e. Gyro controllers provide inherent rate stabilization.

open loop is equal to

f. Since the gyro gimbal is free to change its attitude
with respect to the spacecraft, generally a control system using
several gyro controllers will have inherent adaptive characteris-
tics, in that, the failure of a single gyro unit will be compensated

for by the repositioning of one or more of the other gyros.
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g. In the absence of external torques the spacecraft as-
sumes a particular attitude rate corresponding to a controlled
gimbal position as given by the following equation for roll rate.

P =Pmax Sin 71

h. Gyro controllers are more efficient than wheel con-
trollers since they can effect a change in angular momentum of
the spacecraft without a change in their kinetic energy, whereas
wheel controllers require a kinetic energy change to effect an
angular momentum change which results in a wheel efficiency
ratio of the order of the ratio of the wheel moment of inertia to

the spacecraft moment of inertia.

i.  The provision of a position control loop for the gimbal
angle, as is done in the rate control mode, causes a deterioration

in the ability of the gyro to provide inherent rate stabilization.

j. The ratio of moment of inertia to damping coefficient
for the gyro controller should be greater than that typically used

for integrating gyros of inertial navigation systems.

k. The power requirement for a gyro controller is ap-
proximately constant as compared to an inertia wheel which has

severe peak power requirements.

1. Gyro controllers can provide fast, accurate, and well

damped control for manned spacecraft.
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8.4 Recommendations for Further Study

As an extension to the thesis it is considered desirable

to continue the study in the following areas.
a. Optimization of the design of gyro controllers.

b. Study of controllers which employ fluids to obtain a

change in angular momentum.

c. By the use of machine computation, determine the

effects of the cross coupling moments acting on the spacecraft.

d. Determine the feasibility of using existing angular
moment such as power turbines in a spacecraft to achieve atti-

tude control.

[
as

ot

e. Investigate devices which can store energy as wel
deliver energy for use with inertia reaction wheel control sys-

tems.
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APPENDIX A

SYMBOLS AND MA TRIX NOTATION

A.l Matrix Notation

The treatment of an analytical problem that uses several
sets of orthogonal Cartesian coordinates is simplified if matrix
methods are employed so that the coordinate frames are unam-
biguously inferred by the matrix expressions. In reference 1 there
is contained a particularly good explanation of matrix notation as
applied to control system problems. Thus for detailed explanation
the reader is referred to that reference and only a brief discussion

of the notation is presented herein.

A.2 Coordinate Transformation Matrices

The symbol Q is defined as an orthogonal transformation
between two Cartesian coordinate frames, and it is a 3 X 3 square
matrix. Each Q shall contain a double subscript indicating the
pertinent coordinate reference frames in a ''to-from'' sequence
from left to right. For example, QIA is the coordinate transfor-
mation which is post multiplied by a vector in the A frame to
transform the vector to the I frame. QAI then is the coordinate
transformation that transforms a vector from the I frame to the
A frame, and since all Q transformations are orthogonal trans-
formations the operation of inverting a Q matrix is simply that of

taking the transpose of the matrix.

- -1_ T

Choice of the "to-from'' sequence in subscripts facilitates
mulfiple transformations so that the following is true.

QIR = QIV QVA QAR (Eq. A .2.2)
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It is sometimes necessary to represent a coordinate frame
by more than onc letter, as for example the gimbal frame is re-
ferred to as GIM. When there is chance of ambiguity in a subsecript
a comma is used to separate the two frames. Thus the coordinate
transformation QA, GIM represents the coordinate transformation
to the A frame from the GIM frame. The coordinate frames used

in this thesis are contained in Appendix C.

A.3 Relative Velocities

A velocity is a vector quantity and is expressed in matrix
form by a column vector. Thus WIE means the 3 X 1 matrix rep-
resenting the angular velocity of frame E relative to frame I, ex-

pressed in frame E.

In matrix equations it is necessary to have a means of

expressing the operation of a vector cross product. Thus consider

a vector

WIR = 1i + m j + nk (Eq. A.31)

and a vector FIR = Al + BJT + Ck (Eq. A.32)
i ik

T O« T -

The cross product WIR HR 1 m n
(Refer to ref 29 A B C

p 190) — (Eq. A. 33)

Wy X Hy = (mC-nB)1+ (nA-10)j + (1B-mA)k

(Eq. A. 34)

In matrix form the result of the cross product operation can be

represented as a column matrix such that,

N mC-nB
W, WWH = |nA - 1cC

IR RR
1B -mA

(12q. A. 35)
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Then upon separation of the variables associated with

WIR and HR_I R respectively gives:

FO -n m

WIR'ikHI_{_I Ak 0 -1 B (Eq. A.38)
-m 1 0
— - e —

W= m (Eq. A.37)

the 3 X 3 antisymmetric matrix

0 -n m
W= | n 0 -1 (Eq. A.38)
-m 1 0

Reference 1 derives this definition in a more rigorous

manner from the fundamental operation of differentiating a matrix

equation. Suppose

WIR = QRA WIA + WAR (Eq. A.39)
Differentiating with respect to time
o ® [ d
Wir = Qra Wia + Qpa Wia + War (Eq. A.310)

Since QRA QAR = I, a matrix QRA can be factored from
equation A, 310.

[ ] ® [ ] o
Wip = Qra EVIA +Qug Qpa WLAJ + Wyp (Eq. A.311)
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and by differentiating each of the elements of Q and premulti-

RA
plying the result by QAR we find that

[ 3
QAR QRA is a 3 X 3 antisymmetric matrix

of the form

QAR QRA = WRA* as defined in equation A. 3.8
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A.4 Numbering of Controller Elements

When control systems are considered that contain many
elements some system must be devised to keep track of the
various elements. For the lack of a better arrangement the con-
trollers have simply been numbered as the problems have been
solved. Therefore, the following is a list of the various numbers

assigned to the controllers (Gyro).

1 Gyro with Spin Reference Axis along y axis
2  Gyro with Spin Reference Axis along -y axis
3 Gyro with Spin Reference Axis along X axis
4 Gyro with Spin Reference Axis along -X axis
9 Gyro with Spin Reference Axis along z axis
6 Gyro with Spin Reference Axis along -z axis

Gyro with Spin Reference Axis in x-y plane
and rotated 120° from Gyro 1 about z axis.
8 Gyro with Spin Reference Axis in x-y plane
and rotated -120° from Gyro 1 about z axis.
9  Gyro with Spin Reference Axis in y-z plane and
rotated -a degrees from -y axis about x axis
10 Gyro with Spin Reference Axis in y-z plane and

rotated +a  degrees from -y axis about x axis

A particular control system may require single-degree-
of-freedom controllers, two-degree-of-freedom controilers, or
possibly three-degree-of-freedom controllers in which the angular
speed of the rotor may be varied in addition to the two degrees-
of-freedom in precession of the spin axis of the controller(33).
Therefore the controllers used for a particular system require
further specification to fully define their configuration. Accord-
ingly in Appendix G which presents specific control systems the
angles required to align the case of the controller shown in
Figure B. 9 of Appendix B are given for each system. See also
Appendix C. 3 for coordinate transformations for particular con-

trollers.
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A.5 List of Symbols

a Angle used to Define Gimbal Position in Case. See Figure
B. 10.

Y Angle used to Define Case Position Relative to Vehicle.
See Figure B. 9. Also used as a General Control System
Variable.

B Angle used to Define Rotor Position Relative to Gimbal.

See Figure B. 11.

Ny ny’ & n, Represent Primary Control Variables. Also used

as angle without subscript in Figure B. 3.
T Represents Vernal Equinox.

Qow, &i Angular Rotations of Heliocentric Orbital Plane
Reference Frame relative to Heliocentric Inertial

Reference Frame.

¢,0 and ¢ Angular Rotations of vehicle-centered Vehicle
Reference frame with respect to an Inertial

Reference Frame.

AK’“K’ &“KP Refers to Angular Rotations of Geocentric Orbital
Position Reference Frame relative to the Geo-
centric Orbital Plane Reference Frame. See
Figure B. 13.

LAT Latitude. See Figure B. 14.
LON Longitude. See Figure B. 14

kg and Ay Angular Rotations used in Defining the Geocentric

Solar Reference Frame. See Figure B. 15.

A Represents an Angle when provided with a subscript. When
used as a subscript the symbol refers to the Vehicle

Principal Axis Reference Frame. See Figure B. 8.

E Energy
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H Angular Momentum

M Moment

P Power

Q Orthogonal Coordinate Transformation Matrix. (See Ap-
pendix C)

R Resistance, ohms

p,q, and r Vehicle Attitude Rates in Roll, Pitch, and Yaw

WIA Angular Velocity of Coordinate Frame A relative to

Coordinate Frame I expressed as a Column Matrix

I Moment of Inertia of Spacecraft

J Moment of Inertia of Components of Control System

n Refers to number of columns or rows of a matrix

) A dot over a symbol indicates a differentiation with re-

spect to time

'7&' Represents the forming of a Matrix from a Column Vec-
tor. See Section A. 3.

S Shorthand notation for the trigonometric sine.

C Shorthand notation for the trigonometric cosine.

Subscripts
T Total

CS Control System
ext External

VF Refers to Masses in the Vehicle that are Rigidly Fixed
to the Spacecraft

VM Refers to Masses in the Vehicle that Move Relative to the
Vehicle Exclusive of the Rotating Member of the Control

System Controller.
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N Represents a summation symbol for N Controllers
a Armature

i Summation Index. Also used in defining the Heliocentric
Orbital Plane Reference Frame. See Figure B. 2.

c Refers to the Case of the Controller

g Refers to the Gimbal of the Controller

r Refers to the Rotor of the Controller

X, y, and z Generally refers to the x, y, and z direction of an

Orthogonal Coordinate Reference Frame.

Refers to Angular Rotations of Vehicle-Cen-
tered Vehicle Reference Frame relative to
Vehicle-Centered Inertial Reference Frame.

See Figure B. 7.

ZV,1;YY;and XA Refers to Angular Rotations of Vehicle-Cen-
tered Principal Axis Frame relative to
Vehicle-Centered Vehicle Reference Frame.

See Figure B. 8.

YU and X, GU Refers to Angular Rotations of Vehicle-Cen-
tered Gyro Case Axis Reference Frame rela-
tive to Vehicle-Centered Vehicle Reference

Frame. See Figure B. 9.

Z1 Refers to angular rotation of Earth. See Figure B. 12.

See section B. 1 for Symbols used for Coordinate Refer-

ence Frames.
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A.5 Glossary of Terms

Active Control

Active control of a spacecraft is defined as the operation
of controlling the spacecraft with a torque producing con-
trol system operating with error sensors in a closed loop.

The control system always consumes energy.

Compensation

A signal provided to a control loop which is proportional
to a signal of another loop, and is used to minimiie the
effects of an unwanted coupling between these two loops.
Three types of compensation are used in this report:
gyroscopic coupling, cross control coupling, and space-

craft inertia cross coupling.

Control Logic Matrix

The control logic matrix is defined as an n X 3 matrix

which pre-multiplies the primary control variables to

define individual signals to the n-degree-of-freedom con-
| troller.

Control System Coupling Matrix

The control system coupling matrix is a 3 X 3 matrix
which operates on the vehicle rate variables ‘resulting
from the combination of one or more controllers. If the
control system coupling matrix contains no diagonal terms

then it is also the gyroscopic coupling matrix.

Control System Input Matrix

A 3 X n matrix which results from any arrangement of
terms of one or more controllers in which the control
system input matrix operates on the control system input

variables.
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Control System Input Variables

Any controller may have one or more degrees of freedom
which may be considered the input variables of the con-
troller, i.e. with wheels, the input variables are angular
acceleration of the wheels. With pure gyro systems the
input variables are precession rates. A combination of
two or more controllers give many degrees of freedom

which represent the control system input variables.
Controller

A momentum exchange device which is capable of applying
control moments to the spacecraft. A controller in this
report is considered to be a rotating rigid body. One or
more controllers are combined to form a complete con-

trol system.

Gyroscopic Coupling Matrix

Defined as the control system coupling matrix with all

diagonal elements replaced by zeros.
Guidance

The guidance of a vehicle is defined as the operation of
controlling the thrust vectors acting on a spacecraft, such
that, a desired trajectory is followed. Guidance of a
spacecraft is required during thrusting and possibly during
re-entry if the aerodynamic lift of the vehicle can be con-
trolled.

Inertial Guidance Measurement Unit

The inertial guidance measurement unit is defined as an
assemblage of instrumentation to determine the specific
force vectors acting on the spacecraft suitable for per-

forming the guidance and navigation function.
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Momentum Exchange

A momentum exchange control system is defined as a de-
vice which is capable of providing control torques to a:

spacecraft by a time rate of change in angular momentum
within the device. Consequently, the total mass and angu-
lar momentum of the combined vehicle and control system

remains constant.

Momentum Transfer

A momentum transfer control system is defined as a de-
vice which is capable of providing control torques to.a
spacecraft by ejecting mass from the spacecraft and
creating a force-impulse normal to a lever arm directed

to the center of gravity of the spacecraft.
Navigation

Navigation of a spacecraft is defined as the operation of
determination of the position and velocity (or position and
velocity deviations), and computation of the guidance com-

mands necessary to arrive at the desired destination.
Rest Point
A spacecraft rest point is the attitude which results in

zero applied torque, and at which attitude the spacecraft

exhibits .stable static stability characteristics.

Passive Control

Passive control of a spacecraft is defined as the operation
of controlling the spacecraft purely.by means of an exist-
ing stabilizing torque which acts on the spacecraft. At-
titude control is achieved by dissipating energy and the

system provides inherent sensing,

Pointing Accuracy

The pointing accuracy is defined as the maximum deviation




of the output of a closed loop with reference to a desired
output when no disturbances are admitted to the loop.
Pointing accuracy is a measure of the stability of a

spacecraft controlled by an active control system.

Primary Control Matrix

The primary control matrix is a result of pre-multiplying
the control logic matrix by the control system input ma-
trix. The primary control matrix is then a 3 X 3 matrix
and is diagonal or nearly diagonal for the range of control
system input variables chosen to define the control logic

matrix.

Primarv Control Variableg

Three variables which give non-interacting (or nearly

non-interacting) control in roll, pitch, and yaw.
Rest Position

For a spacecraft in an environment in any time invariant
situation, there exists a spacial orientation at which the
external moments acting on the spacecraft exactly cancel

and no moment acts on the vehicle.

Semi-Passive Control

Semi-passive control of a spacecraft is defined as passive
control systems which increase their damping properties
by introducing gyroscopic effects, or those systems which
possess no static stability but have strong damping charac-

teristics such as spin stabilized vehicles.

Saturate {and desaturate)

Any momentum exchange type control system will have
an initial angular momentum disposition and a maximum
angular momentum storage capability for a particular
control axis. Saturation is defined as the percent change

in the angular momentum of a particular axis when the
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vehicle is non-rotating with respect to the reference frame.
Desaturation is defined as providing an external moment
to the spacecraft which tends to return the momentum

exchange control system to its initial disposition.

Vehicle Attitude Rate Variables

The vehicle attitude rate variables are the roll, pitch,
and yaw rates of the vehicle with respect to inertial

space.
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APPENDIX B

COORDINATE REFERENCE FRAMES

B.1 Summary of Coordinate Reference Frames Defined
Figure Symbol Title

B.1 II Heliocentric Inertial Reference Frame

B. 2 Heliocentric Orbital Plane Reference Frame

B.3 Heliocentric Orbital Position Reference
Frames

B.4 0, 0,¢ Vehicle-Centered Solar Orbital Reference
Frame

B.5 I Vehicle-Centered Inertial Reference Frame

B.6 VR Vehicle-Centered Velocity Reference Frame

B.7 A% Vehicle-Centered Vehicle Reference Frame

B.8 A Vehicle-Centered Principal Axis Frame

B.9 GU Vehicle-Centered Gyro Case Axis Reference
Frame

B. 10 GIM Vehicle-Centered Gyro Gimbal Axis Reference
Frame

B. 11 R Vehicle-Centered Gyro Rotor Axis Reference
Frame

B.12 111 Geocentric Inertial Non-rotating Reference
Frame, and
Geocentric Earth Reference Frame

B.13 K Geocentric Orbital Plane Reference Frame,

P and Geocentric Orbital Position Reference

Frame
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B. 14 G Geocentric Longitude-Latitude Grid Reference

Frame

B.15 S Geocentric Solar Reference Frame

B. 16 @) Vehicle-Centered Planet Orbital Reference
Frame

An aftempt has been made to keep the defined reference
frames identical with those given by Ogletree in reference 21.
For reference frames centered at a planet of the solar system
other than earth, it is considered that Figures B. 12 and B. 16

can be applied with a suitable subscript denoting the planet con-

cerned.
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HELIOCENTRIC INERTIAL REFERENCE FRAME IL

SUN

Xg
Y
VERNAL EQUINOX

FIGURE B.! An illustration of an inettiol fixed frame assuming the sun as a fixed point in space.
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HELIOCENTRIC ORBITAL PLANE REFERENCE
FRAME H

AXIS X, PASSES THROUGH PERIHELION OF. SPACECRAFT ORBIT

ORBIT OF SPACECRAFT AS
PROJECTED ON CELESTIAL SPHERE

;zn
Zn

VERNAL
EQUINOX ASCENDING NODE = broJECTION OF
OF ORBITAL PATH  oRBIT OF EARTH ON
0<i<T CELESTIAL SPHERE

(CwC ~SwSOCHCwS +SwCCI)SwSH)
Qum= (~-SwC - CwSQCIH-SwS D+ CwCCH)(SICw)
sisQ -SicQ ci

FIGURE B.2 An illustration of an Orbital Plane Reference Frame defined as Three Rotations from the
Haliocentric Inertiol Reference Frame.
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HELIOCENTRIC ORBITAL POSITION REFERENCE
FRAME B

ZH’ZB

ORBIT OF
SPACECRAFT

PERIHELION

SPACECRAFT POSITION

o
Wue=| ©

K

+Cosm+Sinm o
Qgy =| —Sinnp+Cosmp o

L] o |

FIGURE B.3 An illustration of aHeliocentric Orbital PositionReference Frame defined by a Single
Rotation from the Heliocentric Orbital Plane Reference Frame.
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VEHICLE-CENTERED SOLAR ORBITAL REFERENCE
FRAME (THREE CASES) ¢,8, & §

010 o+ 0
Q 100 Q, =0 0-
CLI P i ¥e oo

FIGURE B.4 An illustration of a Vehicle-Centered Orbital Reference Frame as related to the Heliocentric
Orbital Position Reference Frame.
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VEHICLE-CENTERED VEHICLE REFERENCE FRAME X
SHOWN RELATIVE TO VEHICLE-CENTERED INERTIAL
REFERENCE FRAME I

MASS CENTER OF VEHICLE

I. FRAME T 1S NON-ROTATING WITH RESPECT TO FIXED STARS, I.E. WITH RESPECT TO
FRAME II.

2. DIRECTIONS OF Xy ,Yy ,Z1 ARE DEFINED TO COINCIDE WITH X,Yg,Zg AT TIME
ZERO FOR ANY PARTICULAR SET OF INITIAL CONDITIONS.

3. ORDER OF ROTATIONS TO PLACE FRAME I INCOINCIDENCE WITH FRAME XZ.
A. ROTATE ABOUT AXiS Zy THROUGH ANGLE V.
B. ROTATE ABOUT Axis Yy, THROUGH ANGLE 8.

C. ROTATE ABOUTAXIS X THROUGHANGLE ¢.

FIGURE B-5 Anillustration of relation between the Vehicle-Centered Inertial Reference Frame and
the Vehicle-Centered Vehicle Reference Frame.
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VEHICLE-CENTERED VELOCITY-REFERENCE
FRAME VR

Yyr (ALONG VEHICLE

INSTANTANEOUS
o BTN
SPACECRAFT—=>
Xg
Z¢
0
WvR,¢ = 9
Azo
‘ +CAzo+ SAzo O
QVR,¢ = —SAZO + CAzo 0

0 o

FIGURE 8.6 An illustration of o Vehicle-Centered Velocity-Reference Frame. Angle Azq is
rotation about Z to place Framel in coincidence with Frome VR. ’




VEHICLE-CENTERED VEHICLE REFERENCE FRAME X

DIRECTION OF
DIRECT ORBIT Y¢ A24,

Xv

INTERMEDIATE

T0 SUN Y AXIS Yy

MASS CENTER OF VEHICLE

Axv —~Avn

2y Z, NORMAL TO ORBIT
OF SPACECRAFT

ORDER OF ROTATIONS TO PLACE FRAME ¢ IN COINCIDENCE WITHFRAME X,
. ROTATE AasouT Axis 24, THROUGH ANGLE Az¢.
2. ROTATE ABOUTAXIS Yy THROUGHANGLE Ayy-

3. ROTATE ABOUT AXIS Xy THROUGH ANGLE Ayy .

* See APPENDIX C FOR Q-

FIGURE B.7 An illustration of a Vehicle-Centered Vehicle ReferenceFrame as defined by three
rotations from the Vehicle-Centered Orbital Reference Frame.
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VEHICLE-CENTERED PRINCIPAL AXIS FRAME A

A
Xa Y /‘ ZV,1
Xv INTERMEDIATE Y AXIS Yy

Azv,

MASS CENTER OF SPACECRAFT

Axa

ORDER OF ROTATIONS TOPLACE FRAME V IN COINCIDENCE WITH FRAMEA .
I, ROTATE ABOUT AxiS Zy THROUGH ANGLE Azy, ;.
2. ROTATE ABOUT AxiS Yy THROUGH ANGLE Ayy-
3. ROTATE ABOUT AXIS X, THROUGH ANGLE Ay,

SEE APPENDIX C FOR Qav-

FIGURE B.8 Anillustration of a Vehicle-Centered Principal Axis Frame as defined by three rotations
from the Vehicle-Centered Vehicle Reference Frame.
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VEHICLE-CENTERED GYRO CASE AXIS REFERENCE
FRAME GU

X
su v MASS CENTER OF VEHICLE
You
NO 1 A e GYRO SRA IS ALONG Ygy
/ ' GYRO IRA ISALONG Zgy,
/ — Vi - o e - - a som A& ma -s
~ ( /- Ave gyro oA iS ALONG Xg
Y
Zoy Zoy Iy

ORDER OF ROTATIONS TO PLACE FRAME X IN COINCIDENCE WiTH FRAME GU.
|.  ROTATE ABOUT AxtS Z, THROUGH ANGLE y.

2. ROTATE ABOUT AXIS Yy THROUGH ANGLE Ayy.
3. ROTATE ABOUT XIS Xgy THROUGH ANGLE Ay gy

See APPENDIX C FOR Qqy, v+

0 Jbex O O
Wyau? | O Jegy>| 0 Ydov ©
y 0 0 Jaz

FIGURE B.9 Anillustration of a Vehicle-Centered Gyro Cose Axis Reference Frame as defined by three
rotations from the Vehicle-Centered Vehicle Reference Frame.
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VEHICLE-CENTERED GYRO GIMBAL AXIS REFERENCE
FRAME GIM

Xaus Xam

Xom
MASS CENTER OF SPACECRAFT

GYRO GIMBAL SA IS ALONG Yg, .

7 GYRO GIMBAL IA IS ALONG Zgy,.
GIM
GYRO GIMBAL OA IS ALONG X gy

To PLACE FRAME GU IN COINCIDENCE WITH FRAME GIM.

I.  ROTATE ABOUT AXIS Xq,, THROUGH ANGLE @ .

a Jx O O
Wau,aim = | O Jam=[ O Yy O
0 0O O g2
-
| (6] 0
ng.@u s O +cosa +sina
O -sina <+cosa

FIGURE B.10 An illustration of a Vehicle-Centered Gyro Gimbal Axis Reference Frame as definedby a
single rotation from the Vehicle-Centered Gyro Case Axis Reference Frame.
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VEHICLE-CENTERED GYRO ROTOR AXIS REFERENCE

FRAME R
Xe Yain
Xom Yr
B
, YR
Xg
B @
Zg Zam
Zg
To PLACE FRAME GIM IN COINCIDENCE WiTH FRAME R
I.  ROTATE ABOUT AXIS Yg;yq THROUGH ANGLE 3.
0 dx O O
wom.n =1 B Jr= | O Jey O

o 0O O Jrz

cosfB 0 -sinf
Qn'em = 0 | 0
+sinB O cosf

FIGURE B.I1 An illustration of a Vehicle-Centered Gyro Rotor Axis Reference Frame as defined bya
single rotation from the Vehicle- Centered Gyro Gimbal Axis Reference Frame.
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GEOCENTRIC INERTIAL NON-ROTATING REFERENCE
FRAME I AND GEOCENTRIC EARTH REFERENCE

FRAME E sz’zs

*Wm,e

POLAR AXIS

-

0° LONGITUDE
REFERENCE MERIDIAN

EQUATORIAL
PLANE

—_————
~—
-~

Xm

Y,
T0 g
FIRST POINT
IN ARIES

Ym

Qg = [ -SAzp CAzx O Womez[ © . o
2 T RAD -5RAD

° o l 86,164 SEC 7292“5 xIO———-SEc

FIGURE B-12 An illustration of the relations between a Geocentric inertial Non-Rotating Reference
Frame and o Geocentric Earth Reference Frame which rotates at Earth Rate.
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GEOCENTRIC ORBITAL PLANE REFERENCE FRAME K
AND GEOCENTRIC ORBITAL POSITION REFERENCE

FRAME P Ve

POLAR AXIS

SPACECRAFT
POSITION IN ORBIT

w ORBITAL MOTION
' II,x

GROUND TRACK \—PRECESSION OF ORBITAL PLANE
‘ ABOUT EARTH'S POLAR AXIS

Ax = = (Wi +Weel(T-To )+ 0
T =INITIAL VALUE OF TIME
X.do = INITIAL LONGITUDE OF ASCENDING NODE OF ORBIT

FIGURE B.I13 Anillustration of the relations between a Geocentric Orbital Plone and a Geocentric
Orbito! Position Reference Frame
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GEOCENTRIC LONGITUDE-LATITUDE GRID
REFERENCE FRAME G

TYPICAL ORBITAL PATH
(NOT IN LOCAL MERIDIAN
PLANE, IN GENERAL)

~+—— SPACECRAFT
POSITION IN ORBIT

Rp IS GEOCENTRIC RADIUS
VECTOR TO SPACECRAFT

Y IS INDIRECTION OF
Wie *Rp

CuatCLon  CratSion  Siar

=Seon CLon 0

-SarClon  —SiatClon  Ciar

FIGURE B.!14 Anillustration of a Geocentric Longitude-L atitude Grid Reference Frame.
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GEOCENTRIC SOLAR REFERENCE FRAME S

(TOWARD
CENTER
OF SUN)

EARTH'S EQUATORIAL PLANE

PLANE OF THE ECLIPTIC

Ag =23°26'59"
= _2TRAD ws Susps SusSps
Wi,s* 36528 oars Qs | “Sus CusCps CusSps

0 -S AS CAs

Hs =psfo+ Wis(T-To)
isfo = INTIAL VALUE OF zg

FIGURE B.I5 Anillustration of a Geocentric Solar Reference Frame.
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VEHICLE-CENTERED PLANET ORBITAL REFERENCE
FRAME O

SPACECRAFT
POSITION
IN ORBIT
Yo
WKP
Xk
(PERIGEE
OF ORBIT)
EARTH'S EQUATOR
ORBITAL MOTION
W,KOE WKP
— D
QO:‘ Yp
010
A
YoEﬁp Q°p= [O 0'|]
A A -1 00
ZOEXP

FIGURE B.16 Anillustration of a Vehicle-Centered Orbital Reference Frame.
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COORDINATE TRANSFORMA TIONS

APPENDIX C

C.1 Coordinate Transformations Between Reference Frames

Relating to Interplanetary Space Analysis

(Refer to Appendix B for definitions of coordinate frames)

—

Qu 1T = (-SQ)CQ_C(A)SQC]..)

(CuCQ2- SwSQCi)

Sisq
W
-
‘Cn Sn 0
QBH — -Sn Cn 0
0 0 ]
-
.
-1 0 0
Qup = 0 1 0
0 0 -1
CA, SA &
Qur,¢ = | S%z0 CAzo
o 0
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(CwSQ2+SwCNCi)

(-SwSN+CwCNCi) SiCw

=SiCQ

SwSi

Ci

(Eq. C.1.1)

(Eq. C.1.2)

See Figure B. 4 for

Qpp 2nd Qg
(Eq. C.1.3)
0
0
1 ] (Eq. C.1.4)
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0 +Ca Sa

Qaim, Gu
1
Lo - Se +Ca (Eq. C.1.8)
EXel; 0 -SB
Qr gmm = 0 1 0
+SB 0 C8 | (Eq. C.1.9)
-
o~ -
CB Sa'SB -CaSB
QR, GU 0 Ca Sa
SB -SaCB Ca CB_] (Eq. C.1.10)
_
ceCy CoSy
Qyp = | ~Césy + s¢secy CéSy + S¢SOSY
S¢Sy + CoSECY -S¢Cy + ChSOSY
.
-S6
S¢Co
C¢Co_|

(Eq. C.1.11)
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TRANSFORMATIONS FOR SPECIAL CASE

Ayu =0 Axgu =0 Qv =1
Cvy Sy 0
Qgu.a = |57 Cy 0 (Eq. C.1.12)
0 0 1
S, —
Cv Sy 0 ]
QGIM, A= -SyCa CaCy Sa (Eq. C.1.13)
L_SwSaf -SaCy Caf_‘
B n
CBCv-SaSBSYy CBSy+ SaSBCy -Ca S8
QRA = -Ca Sy CaCxy So
SBCy+ SaCBSYy SBSy-SaCBCy CaCB_

(Eq. C.1.14)
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C.2 Coordinate Transformations Between Reference Frames

Relating to Planetary Space Analysis

B -
CA,, SA,,, 0
Q m = |[Shz: CA,, 0 (Eq. C.2.1)
|0 0 1_]
Ll CAe = Supe CApe K \ CHySAg + Spp CAL Ch
— 7 _ ;. N
e = | SHkCk C“KCAKS’\K/ SHSA e + Cliy CA A
7 h e ~
| SAg Sk “SARCA
SuK S/\K
Clg | (Bq.C.2.2)
Crgp SHgp 0
0 0 1 (Eq. C.2.3)
b -
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CLAT C LON CLAT S LON S LAT

Qg = -S LON C LON 0
S LAT C LON “SLAT S LON C LAT
(Eq. C.2.4)
[- =
Cus Sus C/\S Sus SAS
Qs mr = | “SHg Chg Chg Cug SAg
0 -Sh Chy | (Bq.C.2.5)
B -
0 1 0
Qup = 0 0 -1
_1
- 0 O_J (Eq. C. 2.8)
<—SuP Chy - Cup Chy SAK) ES“P Sy + Cup Chy C)\K)
Qo = -Shy Sy Sy Oy

(—cup Chy +Sup Chy sxK) (—cup Sy - Sup Chy CAK)
CuPSAK
-Chy

(Eq. C.2.7)

-S/.tP S/\K
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c.3 Coordinate Transformations Relating to the Definition of

Particular Controllers

TWO-DEGREE-OF-FREEDOM CONTROLLERS

1 0 0 v
= Xq
Qu 1, v o 1 0 oL o
Ye
bo 0 1.. Zv w(Eq. C. 3.1)
Zav
-1 0o o] Y
Xv
Suz, v |0 Tt 0 g ﬁ»f
14
oo Zév (Eq. C. 3.2)
Zv
r - XGU
0 -1 0 Yau
= |1 0 0 v
Qgus, v = Zay
' Y,
= 0 o Y (Eq. C. 3.3)
2y
0 1 0 v
Wuage v |t 0 0 Y,
o
Lo -0 L | Yeo (Eq. C. 3. 4)
Zv
ch
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- 1 V3 |
7 2 o
Xv
Q = _\/_-:.3-_ L 0 —m
GUT,V p) 2 NS Y,
Xav
0 0 1 Ze Zv
(Eq. C.3.5)
-1 '“/3_ 0] Yau
2 2 R
120
Xﬁ.;\ Xv
= ‘\/‘i _l— 0 = .
Qcus, Vv 2 2 vy
Zau |
Lo 0 1_ Zv
(Eq.C. 3. 6)

SINGLE-DEGREE-OF-FREEDOM CONTROLLERS

~ n
1 0 0 Yy
_ Xéy
QGUI,V— 0 1 0 v
J,
0 0 1 , rév
ZGu
-1 0 0
Xv
Wuz,v*= 0 -1 0 .
v
0 0 1

(Eq.C. 3.8)

263



Qgus, v =

Qaua, v~

Qus, v =

Qus, v

Qurv ™

-Sy

-Cvy

0 1
0 0
1 0|
0 -1
0 0
1 0
-1 0
0 +1
0 0
+1 0
0 -1
0 0_|
0
+Cyo
—SYO

Zv

Yeu
26y
Xay
Y
(Eq. C. 3. 9)

(Eq. C. 3. 10)

(Eq.C.3.11)

(Eq. C.3.13)




Qeus,v =

Qaug, v~

Qeuio,v =

+Svy

_C-Y

+Cyvy

+Svy

-Ca
o

-Sa
o

-Ca
o

+Sa
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Yo

Ze (Eq. C. 3. 14)

0
_Sa v
)
+Ca Yv
o
- Zv (Eq.C.3.15)
0 | ~ X
xot,\
Yoo
+Sa, Yv
Xau 2
+Caro Zaw

(Eq. C. 3. 16)



APPENDIX D

D.1 Relative Velocities
WII H= 0 Assuming Orbital Elements are Constant
(Eq.D.1.1)
o
. rﬂV
Wyg = | 0 where n = 2” of the order of 1 degree/day.
. T (Eq. D. 1. 2)
— r. = radius of perihelion of spacecraft orbit
V7r = velocity of spacecraft at perihelion
r = radius of spacecraft from sun
WBqS = 0- (Eq. D. 1.3)
K ] 7 (A,
1 0 SAYN AXV
Wey = |© CAxv  SAxyCAyn Ayn
_O —SAXV CAXV CAYN_J s..AZO-
(Eq. D. 1. 4)
E 7 (4]
1 0 -S6 ¢
6 6
WIV = 0 C¢ S¢C
0 -S¢ C4Co v
- - - (Eq. D. 1. 5)
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= - 1
1 0 -SA L Ay au
Wygu™ | © CAxgu SAxgu©tyu Ayu
0 -SAygu CAxgu©Ayu Y
(Eq. D. 1. 6)
S
Weueamm = |°©
0 (Eq. D.1.7)
—0 -
WGeIm, R h
0 (Eq.D. 1. 8)
o ]
WyR, ¢ 0
®
éZO_ (Eq. D. 1. 9)
0 0
WL g = 0 = 0
E ?’{64_ 7.292115 x 10°° rad/sec
(Eq. D. 1. 10)
WKE =0 Assuming Orbital Elements are Constant
(Eq.D.1.11)
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[~ 0 -
Wop = 0
Hxp (Eq.D. 1.12)
Wop = 0 (Eq. D. 1. 13)
[ -
0
Wims = 0
27 Rad
 365. 25 days | (Eq. D. 1. 14)
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D. 2

Approximate Relative Velocities

Valid when the frames nearly coincide or when angular

velocity is purely about a single axis. The subscript A may be

substituted for V for the case where QVA

oV

v

V,GIM

= I.

~ ° -
Axy
®
AYN
L]
Azo
[~ "—' .
? p
. which is further 5
0 defined as a column q
([; matrix of vehicle r
attitude rate variables -
[~ o -
AX, GU
[J
B Ayu
L]
7
0 for the particular problem
- 0 where the case has only one
. degree of freedom.
Y
@ for the particular problem
0 where & » v
0
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(Eq. D.2.1)

(Eq.

(Eq.

(Eq.

(Eq.

D. 2.2)

D. 2. 3)

D. 2.4)

D. 2.5)




for the particular problem where
B » @ and B » '}.' which assumes the

rotor spin as large.

(Eq. D.2.6)
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D.3 Relative Velocities for Controller 1

For the special case where the controller is in position

1, i.e. AX, GU = 0, AYU = 0, and v is a control variable

3

the following relative velocities apply.

| i
{ 0
Wy gu=| 0
Y (Eq. D.3.1)
L7 | 9
@
W = Y S
V,GIM Y@
v Ca | (Eq. D.3.2)
aCB - YyCaSB
WVR = B + vSa
@SB + yCaCpB " (Eq. D. 3.3)
e —
[~ , . \\ p R 3 -
p CBCy-SasBsy '+q CBSY+SaSBCY -r(CaSB -¥CaSB +aCB
WIR = | -pCaSvy+q CaCy + rSa + ';Saf +é
P SBCY+SaCBSY) +q SBSY - SaCBCY ) +rCaCB +YCaCB +4S8
- (Eq. D.3.4)
pCy + qSvy
WI,GU = l-pSy+ qCyvy
r+y (Eq. D.3.5)
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I, GIM

-

pCy+qSy+ &

e
/

(—-p Sy +q C'y> Ca + (r + qDSaf

\p Sy - qCO Sa + Cr + '}7>Car
-
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(Eq. D.3.6)




l

D. 4 Time Rate of Change of Angular Velocities

For the case where /§ » &, 77, 13, d and r. Controller 1

g -

{p (-SBCv-SaCBSY)+ q(-SBSY+SaCBCY)-r CaCB-vCaCB-aSB} B
Wik =| -P(CaCy7-SaSyd)-q(CaSyy+SaCyd) +r Cod +3Se +¥Caa

{p (CBCY-SaSBSY)+q(CASY+SaSBCY)-r CaSB-~TCaSR+aCR) B

(Eq. D.4.1)
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APPENDIX E

EXACT MOMENT EQUATIONS FOR
CASE, GIMBAL AND ROTOR TERMS

In accordance with the definition of the GU, the GIM,
and the R coordinate reference frames of Appendix B, the case.
containing a gimbaled rotor is chosen so that the spin reference
axis of the rotor is aligned along thé positive y axis of the V frame.
This gyro position is also called gyro 1. It is assumed that the

V frame (vehicle-centered vehicle reference frarhe) and the

Equation E. 3.1 is applicable to problems concerning
inertia reaction wheels, but it is not particularly suited for
wheels. Accordingly, section F. 2 of Appendix F is a derivation

of an equation specifically for inertia reaction wheels.
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APPENDIX E

EXACT EQUATIONS FOR CASE, GIMBAL, AND ROTOR TERMS

E. 1 Case Terms

From Equation 2. 3. 6

chase 1_] A - QA, GU HCJ_GU * WA, GU* Hc_:J cU

* W% Qy gy H| aU

(Eq. E.1.1)
Let Qyp =1
Cy -Sy 0 This assumes
QA, cu= | Sv - Cy 0 Controller
0 0 1 Position 1
p— o~ ’_._T
P
WIA = q and WIA = ql
" | 7]
(Eq. E.1.2)
0
Wa,gu=™ | ©
v
N
H =J W
<) gqp "¢ "LGU
(Eq. E.1.3)
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L4
H = +
Jd o Ted Qu. a [WIA + WGU,A‘;‘(WIAJ WA, GU
(Eq. E.1.4)
Substituting these matrices and performing the indicated

operations gives for the contribution of the case terms the

following moments,
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E.2 Gimbal Terms

By an identical procedure as the previous section, the
gimbal terms are found to be the following.
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Aﬁ (®b - og fd+ 1) 0D +(2d+0DAd -b) L)) - (PSAT - DDAD 4 d) oSA S+ OSOA - 60.».\.‘ PSAD) -
_HcU\.p + DD I + DSADD - am%& m 2D (kD& + d) -AS0S (4 + .&v 28
MM (¥b -ogAd 4+ d)OS+ (0I+ 0D4d - D) ADO] + (ASha -60\.,.@+mccO>m - \cUﬁ%.Tam\L ADDD +

Hcm\.r + mmp + ADD)O b4 cu>wa-“_ ﬁcm (AD2 + dy - Ag0D (* + é-u_v%mh +

283

{ [ ®1+204d-b) L5+ (ksLa+ DL + d)AD + 2] As +

(@ + ASb + ADd) (4 + .c\povxwh =%y




AH .N .m. .Umv
:” (b - oghd 4 I) 0D + (014 0DAd - b) SAD - ASka - 0DLb + d) DSAS 4 DSVL - ao& 0D +
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_H DSA + DSI 4 ADDDD + eU»wa-_ [+sb+10d ..L& 20} “r+

Tm.f ASb 4 ADd) ADD - »m&_‘ B, fy
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The preceding is adequate when two of the three attitude

angles are small, otherwise we must substitute

p=¢-ySe
q=6Cé - yS$CH
r=yCéCO - 6Sé
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E.3 Rotor Terms

By an identical procedure as in section E. 1 the exact

rotor terms for a rotor of a controller in position 1 are found.

Define

er = dimetrical moment of inertia of rotor

er polar moment of inertia of rotor

The following equations are adequate when two of the
three attitude angles are small. Otherwise we must substitute

p=¢-ys6
q=6

'1
1
<
©-
(@]
S+
|
(s}
wn
©-
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APPENDIX F

APPROXIMATE EQUATIONS FOR CONTROLLERS

F.1 Arbitrary Controller

Using Equation 2. 3. 8 and assuming the angular momentum

of the rotor is predominately along the spin axis of the rotor, (33)
one can derive the approximate equation
= Pty
ZMCS__I Q, M VA, aiv¥ He| " Wia™ %, cim Uy |
A GIM GIM
(Eq. F.1.1)
0
L]
where Hr_] = JPB
GIM 0 (Eq. F.1.2)
p
Now WIA =l q from Appendix D
r (Eq. F.1.3)
Qa gim = @4, gu QGU, GIm (Eq. F.1.4)
and can be found from the
coordinate transformations
of Appendix C. 1
Wa amvm™ “amv, cuVa, cu * Yeu, gim
(Eq. F.1.5)

and can likewise be found
using matrices of Appendix C

and Appendix D.
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Note that equation F. 1.1 is a sum of two parts. The first
of these parts will form the primary control matrix and the
second part will form the gyroscopic coupling matrix of the final
equation in a particular system using one or more of the control-

lers.

After performing the indicated operations, the equation for
a single controller with an arbitrary case position is given by the

following equation.
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It is not considered desirable to put the preceding equation
in matrix form as there would be no simplification. However,
upon use of the preceding equation in a particular controller
position, the time rates of the case angles will usually vanish and
considerable simplification then results. At this point it is de-
sirable to put the remaining terms in matrix form to assist their
summation with terms from other controllers with the same

control system input variables.
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F.2 Equations for Inertia Wheels

Unfortunately equation F. 1. 6 cannot be used for the case
of inertia reaction wheels because it has been assumed in that
section that the angular velocity of the controller is a large value
and is constant. Equation E. 3.1 can be used for the X wheel and
the Y wheel or any other wheel that lies in the x-y principal axis
frame or for a pure z-aligned wheel. For the perfectly arbitrary
inertia reaction wheel it may be desirable to list here a general
expression for the moments. If we consider that the wheels are
rigidly mounted in the spacecraft then equation 2. 3. 8 can be used

and is written as follows.

N
ZMCS 1 Z{QAR l— e ] *WarwH; | ]
A =1 L R R-I
+WIA‘A’QAR Hr_l } (Eq. F.2.1)
R |.
i
Or, the same equation written with respect to the case frame is
N
ZMCSJ = Z Q,cul Hr| *Wp guitt: |
A i=1 GU GU
+ WIA‘A“QA, GU Hr_J (Eq. F.2.2)
GU

i

;

Since the case holding the wheel is rigidly attached to the space-

craft WA GU* =0
N L J
ZMCSJ = Z Q,cu Hr| *Wa%kY cu ]
A i=l GU GU

i

(Eq. F. 2. 2)
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The most difficult parti of this derivation is that of finding
I1 A considerable simplification of the algebra results
r
GU
if we agree in this section to let

a b c-l

Qgua=|d e f (Rq. F.2.3)

ig m n

Where the elements of equation F. 2. 3 are given by equation C. 1.7
for the case where the vehicle reference frame is identical with
the principle axis frame. Then it is determined that the angular

momentum with respect to the case frame is as follows.

Hr_J = Jr‘_l Quu a Via * Jr_l Qcu, r YoM, R
GU GU QU
_ S -
J 8 qu Jgc P 0 |
L
HrJ = | Jpd Jpe Ipt al + |IpB
GU
LJXg JXm JXn_ _r_ i 0 a
_ ~ (Eq. F. 2. 4)
T O 0
wh.ere JrJ = 0 JP 0 = Jr_]
R GU
‘LO 0o J,
(Eq. F. 2. 5)

Note that I, | =, | Wu,aV1a*r | u,rVemm, r
GU GU GU
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X X X
H =|J_d I e J.f g1 + i B
rJ cy P P P P
_JXg JXm JXn-J _r_ = 0 ]
(Eq. F. 2.6)

Following through the indicated operations by substituting
the above matrices into equation F. 2. 2 gives the following equa-
tion for the moments contributed by the inertia reaction wheels
of an attitude control system.

ro ~ - 1]
d 0 f -e P
EMCSJ =z JpB e |+IpB |-f 0 d al7y
A = £ e -d 0 r
b - e
r -— e ™
JXa JXb JXc P
N
+Z QA,GU JPd JPe JPf q
i=1 ' .
| Ixe Jym JXm_ T
o = — e B
JXa JXb JXc P
* Wi gu| Jpd Ipe Ipf al ¢
'JXg Jxm J¢n r
S — — - oD
i
(Eq.F.2.7)

Equation F. 2. 7 has been written in two parts because it is
convenient to lump the second part with the vehicle since that part

is not dependent on the control variable 8. The second part relates
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to the moments contributed to the vehicle by the wheels acting as

inert masses constrained to move with the vehicle. Therefore the

equation is written as the following.

N d 0

A i=1
f e
where d = —CAX, GU Sy +§A
e = CAX, cU Cy + SA
f = SAX, GU CAYU

X, GU

X, GU

d e
For an X-wheel 1 0
Y-wheel 0 1
Z-wheel 0 0
For an X-wheel
JP B 0
ZMX-wheel_J = 0 * 0
A
0 0
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p
B a
0 - LI‘_

) —

(Eq. F.2.9)



For a Y-wheel

r~ - ~ . -
0 0 0 -JpB p
- 3 |+
ZMY-wheel _J JPB 0 0 0 q
A .
0 JPB 0 0 J Lr.
S— - e
(Eq. F.2.10)
For a Z-wheel
"o 1 [ o 7B 0| (p ]
P |4
EMZ‘wheelJ =10 + -JPB 0 0 q
A oe
..JPB - S ° 0 0" ._.r .
(Eq. F. 2. 11)
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.3 Equations for a Particular Three Degree-of-Freedom

Controller

Only onc controller is considered wherein three degrees-
of- frecdom of the rotor are allowed. This controller is aligned
with its spin reference axis along the positive x-axis of the

vehicle-centered principal axis frame. Thus in equation 2. 3.1

if we let v = 'y-F)OO and .T" = 0, the followine cquation is obtained
d
CaCy -SyCa -CvSa [.3.
ZM(3‘3'3)_J = er Sy Ca CaCxy -Sv Sa By
A e
N 0 .
L S Ca LBO’—
o~ -1 _\
0 Sa -CaoSvy P
+ erB -Sa 0 CaCy q
SyCa -CyCoa 0 r
- - -
(Eq. F.3.1)
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F. 4 Equations for Particular Two-Degree-of-Freedom

Controllers

In the synthesis of the moment equations for those control
systems that are composed of several controllers of the two-
degree-of-freedom type, it is convenient to have the simplified
moment equations of each controller. Thus the controllers de-
fined by the following angles are presented. See Figure B. 9 and
paragraphs A-4 and C-3.

TABLE F. 4
POSITION ANGLES FOR TDF CONTROLLERS
CASE ANGLES
TDF CONTROLLER '
Ax GuU Avu Y

1 0 0 0 +v
2 0 0 +180° + v
3 0 0 -90° + 4
4 0 0 +90° + v
7 0 0 +120° +
8 0 0 -120° + v

If the above reference angles are substituted into equation
F. 1. 6 the following equations are obtained. Note that v is a case

angle retained as a control input variable.
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F.5 Equations for Particular Single-Degree-of- Freedom

Controllers

In the synthesis of the moment equations for those
control systems that are composed of several controllers of the
single-degree-of-freedom type, it is convenient to have avail-
able the simplified equations of each controller. The following

table of angles define the orientation of the case relative to the

vehicle centered principal axis frame. See Figure B. 9.

TABLE F. 5

POSITION ANGLES FOR SDF CONTROLLERS

- CASE ANGLES

SDF CONTROLLER o Ayg "
1 0 0 0
2 0 0 +180°
3 0 -90° -90°
4 0 +90° +90°
5 +90° 0 -90°
6 -90° 0 +90°
7 0 -90° +120°
8 0 -90° -120°
9 -, 0 +180°
10 *ta 0 +180°
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SINGLE- DEGREE- OF-FREEDOM CONTROLLERS

(Subscripts of Variables Omitted)*

Controller 1

ZMSDFH a

Controller 2

ZMSDF%I A =

Controller 3

Swony| -
SDF?ll A

Controller 4

ZMSDFﬂ A =

Controller 5

ZMSDF g] A =

qSa

JPB - aoSa

+&Ca

qSa
JP B -pSa
-pCa

r Ca
pS«a

p Ca

r Ca

& Sa

-

o Ca

~(r+ @) Sa
JPB +(r + &) Ca
pSa - qCua

(@ - r) Se
Jpé (¢ - r) Ca

pSa + qCa«

(q - @ Ca
Jpé 'pCa -

Co

rSa

(q-aSca
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(Eq. F.5.1)

(Eq. F. 5. 2)

(Eq. F. 5. 3)

(Eq. F. 5. 4)

(Eq. F. 5. 5)




Controller 6
-(q + @) Ca"l
{

ZMSDFfiJAzJpB pCa - rSon (Eq. F. 5. 6)
(q + @) Sa

Controller 7
(r + & S (30° + o)

. * o
ZMSDF'ZJ A= JPB -(r + a) C(30” + a)
-pS(30° + o)+ qC(30° + a)

(Eq. F.5.7)

Controller 8‘

(r + &) S(30° - @)

—— - L 3 o
ZMSDFB_J A =JpB (r + @) C(30" - a)
-pS(30° - @) -qC(30° - o) -

(Eq. F. 5. 8)

Controller 9

P I"C(Q/o' Q) - qS(aO- @)

ZMSDF95A=JPB +(p—a)s(ao—a) ;

—

-(p - a)C(ozo - a)
(Eq. F. 5.9)

Controller 10

+ qS(a/o + a) +rc(a,o + )"

ZMSDFIOJA=JPB +( a - p) S(ao+ a) ;
“"((.Z-p)C(ao-ir a) J

(Eq. F. 5. 10)
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Note that the equations of this section have been written in
the form of a column vector because they are simple expres-
sions with only a few terms. When a number of the above
equations are added to form a complete control system, the

form of Equation 3. 2. 3 is recommended.
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APPENDIX G

EQUATIONS FOR PARTICULAR MOMENTUM EXCHANGE
ATTITUDE CONTROL SYSTEMS

G.1 INTRODUCTION

A spacecraft attitude control system of the momentum
exchange type will usually contain a number of momentum ele-
ments either of the inertia reaction wheel or of the gyro type.
In this thesis inertia reaction wheels are referred to as simply
inertia wheels and have fixed axes of rotation whereas gyros
conirollers to differentiate from the conventional
gyros used in inertial reference systems and in addition to its
spin motion a controller may have one or more degrees of
freedom. To determine the moment contributions of a particular
system consisting of several controllers or wheels as the case
may be, one needs only to sum the contributions of the individ-
ual controllers and wheels. A number of the more common

controllers are represented in Appendix F.

In this Appendix a number of control systems have been
defined by choosing various configurations of controllers. The
following table indicates the controllers which constitute the

system.
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The numbers in the parenthesis partially define the control
system by giving the controllers used for roll, pitch, and

yaw respectively. Thus the code following the Sun Pointing
System (0-34-34) indicates that there is no roll control;
controllers 3 and 4 control both pitch and yaw. A controller
used in only one axis indicates a single degree-of-freedom
controller, and for controllers 1 through 6 a controller used
for two axes indicates a two-degree-of-freedom controllers.
A controller used for three axes is a three-degree-of-freedom

controller.

These systems are adaptive versions of the (12-34-1234)

four controller system.
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_Single Controller System (3-3-3)

Description of System:

Control Logic:

System consists of a number 3 con-
troller which has three degrees of
freedom. The rotor of the controller
is free to precess in two directions
plus the rotor is capable of being ac-

celerated about its axis of symmetry.

No control logic is required for the
single controller system since the
system contains three degrees of free-
dom, and the control system input ma-
trix can be nearly diagonalized by

suitable arrangement of the matrix.

+ 'B gives roll to left
+ ')? gives pitch nose down
+ & gives yaw to left

Moment Contribution of Control System:

— Op ~m

+CaCy -SvCa -CvSa]

- + _ .A.

EM(S-B-S)_J A JP +SyCa CaCy Sy S« By
| +sa 0 +Co] LBa

0 +Sa -CaSy] [p

+JPB -Sa 0 +CaCy | d

L+cqsy -CaCxy 0 | {_r
(Eq.G. 2.1)

310




_Sun Pointing System (0-34-34)

Description of System: This system is a special case of the

four controller system. The controllers

are TDF.
. ~ - [~ + -‘ — -
Control Logic: Y5 0 -1 .0 n
X
V4 ) 0 +1 | 0 ny
ag 0 0 -1 n,
@, 0 0 -1
+:,/3 gives pitch nose down
+(;3 gives yaw left
Moment Contribution of Control System:
o A e
0 0 0 Ny
; = ; - + "
ZM(O_M_MZJ A" 2058 |0 CaCr,q SaSY, Ny
0 0 -Ca ;7
L J Lzl
- - ™
0 +Sa —CozS'y3 o)
+2JPB -Sa 0 0 q
+CafS'73 0 0 ] er
(Eq.G. 2.2)
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is

The equation written in terms of control input variables

- - -
0 0 0 ! 0‘]
ZM(0-34—34)_1 A =2JpB | 0 +CaCyvy -SaSvg V3
0 0 +Ca o
L J U
[ - - -
' 0 +Sa -CQ‘S’}’:3 p
+2JPB -Sa 0 0 q
"
L Ca/SY3 0 0 | L r-
(Eq.G.2.3)
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Sun Pointing System (12-0-12)

Description of System: This system is a special case of the
four controller system. The controllers

are TDF.
Control Logic: P_Y ] 4 0 0] ]
1 X
D _ -1 0 0 ny
a, B 0 0 -1 nz
@y o o -1f{

+;1 gives roll right

+c'1/1 gives yaw left

Moment Contribution of Control System:

— - l'. “
-Ca Cyl 0 -Sa S'}'1 n,
o ®
ZM(lz-o-lzy A " 27ph 0 0 0 My
0 0 -Ca n,
— - und .J
o A [ 1
0 Sa 0 P
)
+2JPB -Sa 0 —CaS‘Yl q
0 CaSy 0 r
! 1 J U
(Eq.G. 2. 4)
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The equation written in terms of input control variables is

— 1 V‘. I
[}
EMU?-O—IZ?JA: ZJPB 0 0 0 0
0 0 Ca @
L B T
a - -
0 Sa 0
[
+2JPB -Sa 0 —CaSyl
0 Ca/S‘Yl 0
L B L
(Eq. G. 2.5)

314




Eals 0 N\rm 0D - Amko 0D - m\rm 0D mv.,
b 0D CAg 0 oS ¢ -
d| [|(%ro®0 - *rs00e)- bSg 0 ]
Ex i 0D € 0 0 ]
€4 A0 0 + Srg oS - €A00D 2+ Chgo)
2 | ¢og0g- 0 o000

[
gdp = Gmm-%-mvsw

:wa3sAg 10J3U0D JO UOTINQIJIUOD JUIWOIA

€
Po=fo=f Fo=fL pegr-ve-zn)
wI9}s£s J9[[0JIUOD INOJ dY} Se awWes ayj} oq [[IM 1 ‘IS[[0J}UO0D SUO

Jaquinu ayj} Jo aanyrej ayl Suimoiioj padueyd st 91801 [0JIIUOD By} sSaun

(PE2T-¥€-2T) was£s IS[[OIIUOD JNOJ

8y} Ul J9][0JJUO0D dUO JAqUINU 8Y} JO 2an[iej JO }[NSaJ B ST Wd}SAS STy

10180 10a3U0)D

:wa3sAg jo uorydraodsag

(F€2-P€-2) walsAS JS[[0JIU0D 23aY],

315




- ) -
x 0 (tsw0)  (Mwow0 +frsw02)
b ("esop-) 0 oS ¢- mm?
| lm;oao - f1sopzs)  wse 0 ]
[0 [ ST 0 o
A Hows - ELgog - €450 2 Wseo- | gc - v Qﬁ-wm-sgw
.H\r s o5 + 0 Tooo-
L *J L .

:Wa}SAS [0J}U0D JO UOTINGIJIIUOD JUSWOIA

SR pue Vo =to=1In 'WI91SAS JSIJ0JIUOD JNOJ SB SWES 10180 10J3U0D
‘potre;
Sey JO[[0JIU0D OM]} Jaquinu }doOXd WISAS JD][0JIIUOD JNOJ SB SWES :wo1s£g jo uoridiaosa(g

(PET-FE-1) WaISAS JSITOJIUOD d3JY],

316




(8 '2 "D ba)

~ [~ .
a 0 ("womo + uswoz)  (Prswol)
b ("rowo - Wswoz-) 0 osg- | g9r+
1 ®
Ldj L PAs 0 oS € o |
g - = -3
0 0D g 0 0
y p p d._ Viger-v-21)
A Ag 08 ADDD- 0 gor= EW
d °
8 Piows + Msosg oS00 Lo z+
. ¢ ~ -
:u193184Ag 10J1jU0D JO UOTINQTIIIUOD) JUSWOIA
N\ra =L To=Cp=1p ‘W9)SAS JIS[[OJIUOD INOJ SB SUWEBS :01801 T0IIU0D)
‘palie] Sey JS[[0JU0D g Jaqunu 3dodxXd wia)SAs JI[[0JIUOD JNOJ SB SWES :wa}s4g jo uoridiaodsag

(P21-¥-21) WOISAS JIL[[0JIUOD 98J4Y]J,

317




(6 '¢ "D 'bd)

L

1 r
F 0 mm>oao - Tgop Nv 450D
b Aco € o+ g0 Nw 0 oS ¢ - g9r4
4
d ELs 0D - vS g 0
b i
c;_ [ 0D ¢ 0 0
i - v —c-
m\mw Pm\rmdmlv LoD+ 0 gdp = _.MmmH € NS§N
! : .
m
T AmScm - ;mcmmv ELg0) - oo g
Lo L i
:w191SAS [0JIU0D) JO UOTINGIIIUOD JUDIWOIA
L - =L €0 =% = 'o -woysks I9]{0IIUOD INOJ SB SWES ;01801 1011U0D
‘palTe] SeY JS[[0JIU0D § Jaquinu }do0Xd Wd}SAS JI[[0JI}UOD JINOJ SB SWES :wo1s£g jo uotridraosa(g

(£2T-€-2T) Wa1SAg JI[[0JIIUCD 39JY],

318




Four Controller System (12-34-~1234)

Description of System: Four TDF Controllers are mounted

in positions 1, 2, 3, and 4.

Control Logic:

— - ~ -
8] +1 0 0
Yo -1 0 0
73 0 -1 0
oA ) 0 +1 0
Oy 0 0 -1

i

a, 0 0 -1
aq 0 0 -1
a, 0 0 —IJ

+§(1 gives roll to right.
+'§/3 gives pitch nose down.

+a gives yaw to left.

Moment Contribution of Control System:

-CarCV1 0
.
EM(12-34—1234UA =2Jph 0 ~CaCry
0 0
_
0 2Sa
.
+2J,B | -25e 0
:-Ca/S')(3 -+-Cc1fS‘)'1
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-Sa S'y1
+Sa S'Y3

-2Ca
-

-

-Ca S’Y3

-

(Eq.G. 2.10)

=




The equation written in terms of input control variables is

3

2T 8

ZM(12-34-1234HA =

+2JPB

-

-Co C‘yl

0

-2 S«a

Ca/S’Y3
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Ca/C’y3

2Sa

1 (. ]
2 Co &
i i
—Ca/S'y3 p
—CQ’S'YI q
0 r
(Eq.G.2.11)




Six Controller System (56-34-12)

Description of System: Six SDF Controllers are mounted
in positions 1, 2, 3, 4, 5, and 6.

Control Logic:

o, 0 0 -1 nx
a, 0 0 -1 ny
o, 0o -1 0 n
, = 0 -1 0
05 +1 0 0
g +1 0 0

[ ° ] L i

+&5 gives roll to right
+¢'13 gives pitch nose down

+a gives yaw left

Moment Contribution of Control System:

r 0 N re N
—Ca/5 0 n,
ZM<56-34-12>JA =2JpB [ O -Cay 0 Ty
0 0 -Ca 7
L lJ L z_
~ - ~ -
0 -i-Sa/1 ~Sa/3 P
3 |-Se ~Sa
+2J58 1 0 50 | a
+Sa3 +Sag 0 _J r_J
(Eq.G. 2.12)
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The equation written in terms of control system input variables

is

[ -Cayg 0 0 | -&;

ZM(56—34—12) A 2JPé 0 *Cay 0 a
0 0 Cey o
- - -7

0 Sal —SQ/S p

+2JP[.3 —Sa/1 0 -Sa5 q

—+Sa/3 +Sc15 0 I rd

(Eq. G. 2. 13)
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Three Controller Orthogonal System (5-3-1)

Description of System: System consists of SDF Controllers
Numbers 1, 3, and 5.

Control Logic: None required since system has
only three degrees of freedom and
control system input matrix can be

nearly diagonalized by arrangement.

+ag gives roll to right.
+c'r3 gives pitch nose down.
L4

+al gives yaw to left.

Moment Contribution of Control System:

[ -Ca, -Sa, 0 -&57
ZM(5'3'1)_JA =JP[§ 0 +Ca, -Sa, &3
b—st 0 +Carl_J L&IJ
C 0 (Sey+Cay) GCal-s%)q rp-
+JPf3 (-501-0015) 0 <—Sa5+Ca3) q
(Cay+sa;)  (Saz-Cey) o .

(Eq. G. 2. 14)
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Two Controller Yaw System (0-0-12)

=

qSay _l Logic
: %1 =%
ZM(O-O-IZUA =2JpB |-PSe 4-&1 gives yaw to
. left
Lalc al_j
(Eq.G.2.17)

Two Controller Pitch System (0-34-0)

“rSag Logic
° . Q‘B = (1/4
ZM(0-34-003J A 27pB | a3Cag +&, gives pitch
nose-down
Lp Sa3
(Eq. G. 2.18)
Two Controller Roll System (56-0-0)
-, _ .
-45Cay Logic
0 a/5 = (,1/6
EM(SG—O—O)_JA =2JpB |-r Sag +5f5 = gives roll to
right
q Soz5
(Eq.G.2.19)
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MIT "Vertical Vee'' (0-0-9,10)

Description of System: System consists of two SDF Controllers.

Control Logic: None proposed since system is to

be used as passive control system.

0 0 0 [0
. |
EM(O—O—Q, 10)JA =JpB| 0 'S@o'“9> *SC"O*‘HO) aq
0 ="C@o""g> *C@o*"’w) 210
- p

- 0 —S(ao-ag}S@o +a/10> C@O-afg)‘kC(aO-aw)i p
*Ip B S(ay- "9)' S(aq +"10) 0 0 § 4
-C(ay- "’)’ Clagray,) O 0 _;: g
_ - _
(Eq. G. 2. 20)
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Four Controller Sun Pointing System

Description of System:

M =2J
Z (0—34-12)JA P

Logic

»
+2Jp8

Qe Qv Qo
[y

Qe
>

(0-34-12)

Six Controller system without

Controllers Number 5 and 6.

0 0
0 -Ccz/3
0 0

1
-Sal 0
5013 0
-1 0 :
-1 0
0 +1
0 +1
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o |

0

o

S e

q

r
__

(Eq. G. 2. 21)

(Eq. G. 2. 22)



Three Orthogonal Inertia Wheels (Not a Gyro System)

Control Logic: None required because system has three
degrees of freedom and control system

input matrix can be diagonalized by inspec-

tion.
B m oo
1 0 0 Bl
EMS WheelsJA = JP 0 1 0 32
o 0 1 g
L i _ 3
] s [ ¥
u +ﬁ3 -Bz P
+JP _33 0 +Bl q
[ ) [
+Bz -Bl 0 | -r“J

(Eq. G. 2. 23)
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